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Table 1

Measurement Procedures

A horizontal circumference around the body, taken parallel to
the floor.

Front (back)
arc

The front (back) portion of the girth from left to right side
seam locations.
- Side seam for waist front (back) arcs: a vertical line
extending from the center of the armscye to the floor.
- Side seam for top hip front (back) arcs: a vertical line
from the center of side body at the top hip level.
- Side seam for top hip front (back) arcs: a vertical line
from the center of side body at the hip level.

A horizontal distance taken parallel to the floor on the frontal
plane.

A horizontal distance taken parallel to the floor on the sagittal
plane.

Front (back)

A front (back) portion of the depth bisected by a frontal plane
located at the side seam.
- Side seam for front (back) depths: a vertical line

depth located at the mid-point between the abdomen
prominence point and buttocks prominence point (see
Figure 1)
Landmark locations
~_Waist | The smallest point of back waist as seen from the side.
~__Top hip A point half the distance between waist and hip level.
Abdomen The greatest prominent point of the abdomen as seen from
T the side.
Hip The greatest prominent point of the buttocks as seen from the
= |side.
Max-thigh One inch below the crotch.

FIG. 7

US 9,251,591 B2



U.S. Patent Feb. 2, 2016 Sheet 8 of 24 US 9,251,591 B2
Table 2
Variable Mean Range S.D. Skewness Kurtosis
e , 23.1 31.3
Girth: Hip — Waist (9.1) (12.3) 1.99 -.04 -14
Girth: Top hip — Waist (15489) 21.8(8.6) 142 .09 -.05
Girth: Hip — Top hip 82(3.2) 189(7.4) 141 -.03 -50
Front arc: Hip — Waist 82(3.2) 16.1(6.3) 1.04 -.10 -14
Front arc: Top hip — Waist 4.9(1.9) 128 (5.0) .83 .01 -15
Front arc: Hip — Top hip 3.2(1.3) 104 (4.1) .68 -.16 -17
Back arc: Hip — Waist (152'19) 166 (6.5) 1.12 10 -14
Back arc: Top hip — Waist (130'90) 14.9 (5.9) .98 .26 -.10
Back arc: Hip — Top hip 29(1.1) 9.5(3.7) .64 .03 -12
Width: Hip — Waist 8.2(3.2) 11.3(4.5) 75 16 -17
C\;‘a’insttDepth: Abdomen — 07(3) 75(30) .34 _.02 2.04
Front Depth: Abdomen —Hip 2.6 (1.0) 10.8 (4.2) 46 A1 81
Front Depth: Hip — Waist 6.8 (2.7) 9.6(3.8) .65 A2 -13
Depth: Hip — Waist 49(1.9) 94(3.7) .62 =11 -10
Buttocks angle 22.66 23.23 3.99 -.01 -17
Table 3
Percentile

5th 10th 25th 50th 75th 90th 95th

BMI 18.6 19.6 21.2 23.9 281 34.1 38.3
Waist girth 67.9 70.1 745 80.6 89.9 1017 110.2
9 (26.7) (27.6) (29.3) (31.7) (354) (40.0)0 (43.4)

Hip qirth 91.8 93.9 98.5 104.0 1123 1234 1306
P9 (36.1)  (37.0) (38.8) (40.9) (44.2) (48.6) (51.4)

FIG. 8
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Table 4
Rotation sums of squared loading
Cc t 9 i
omponen Eigenvalue v /o of Cum:)JIatlve
ariance %o
1 4.2 28.0 28.0
2 3.3 21.9 50.0
3 3.0 199 69.8
4 14 9.3 79.2
5 1.3 8.5 87.7
Table 5

Principal component

Variable 1 2 3 4 5 6
Girth: Top Hip — Waist -.139 .283 118 -.024 .000
Width: Hip — Waist 297 119 -.043 145 -.101

Front arc: Top Hip — Waist -.154 453 -.155 -.133

Girth: Hip — Waist 305 110 -.051 156
Front arc: Hip — Waist .256 -.194 -.036
Back arc: Top Hip — Waist -.215 .097 .086
Back arc: Hip — Waist -.072 14 -.051

Girth: Hip — Top Hip
Front arc: Hip — Top Hip
Back arc: Hip — Top Hip
Buttocks angle

Back Depth: Hip — Waist

.036 -.048 .016
-.165 -.106 -.081
202 .052 122
-.083 13 262
-.066 235 -.400

Depth: Hip — Waist 376 -412 .085
Fro_nt Depth: Abdomen — 429 057 013
Waist

El;gnt Depth: Abdomen — 016 - 079 069

FIG.9
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Table 6

Component
Variable 1 2 3 4 5
Girth: Top Hip — Waist 296 015 .066
Front arc: Top Hip — Waist -.075 - 117 288

Width: Hip — Waist 146 183 -.108
Front arc: Hip — Waist -.030 -.152 118
Girth: Hip — Top Hip 146 -.047 047
Front arc: Hip — Top Hip 140 045 -.089 -173
Back arc: Hip — Top Hip -.014 .035 220
Buttocks angle -.063 142 -.087
Back Depth: Hip — Waist 204 125 283 -.145
Depth: Hip — Waist 317 225 . 748 381

Front Depth: Abdomen —Hip  -.006  -.078

Front Depth: Abdomen — 174 064
Waist

Table 7
Component

Variable 1 2 3
Front arc: Top Hip — )
Waist 086
Girth: Top Hip — Waist 318
Front arc: Hip — Waist -.030
Width: Hip — Waist 209
Girth: Hip — Top Hip .068 154

Front arc: Hip — Top Hip 105

Back arc: Hip — Top Hip .021
Buttocks angle -.099
Back Depth: Hip — Waist 151
Depth: Hip — Waist 379

FIG. 10
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Table 8

Body shape group
1(n=727) 2 (n=867)

: it 3 (n=894)
Variables for cluster Curvy Hip tilt . .
analysis shape shape Straight shape F Sig.
Mean S.D. Mean S.D. Mean S.D.

PC1: Waist to top hip 731 814 793 784636 000
silhouette

PC2: Top hip to hip 970 965 929 124.186 000
silhouette

PC3: Buttocks prominence .832 .836 816 572.582 '090
Z1: Abdomen prominence 816 746 884 614063 000
Z2: Slope from abdomen to 775 847 797 659 569 .090

hip

FIG. 11
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Table 9

Body shape group
1n=121)  2(n=867)  3(n=0%4)
Variables Curvyshape Hiptiltshape Straightshape  F g,
Mean S.0. Mean SD. Mean SD.

£ 738 .000°

Front arc: Top Hip - Waist

Girth: Top Hip - Waist

) 11 60647 00

PCt

Front arc: Hip - Waist 0 452000

Widt: Hip - Wais 0 20

Girth: Hip- Top Hip 137 5663 .000°

£2 667 .000°

PC2  Front arc; Hip - Top Hip

62080007

Back arc; Hip - Top Hip

FIG. 12A
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Table 9 (continued)

Body shape group
1(n=121)  2(n=867)  3(n=094)
Variables Curvy shape Hiptilt shape Straightshape  F g,
Mean SD. Mean SD. Mean S.D.

Buttocks angle 41500 .000°
003 Back Depth: Hip - Waist 629.38 .00
Depth: Hip - Waist 13774 000°
7 Front Depth: Abdomen - A% OO
Hip
7 Front Depth: Abdomen - 8057 000"
Waist

FIG. 128
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Table 10

Body shape group
1 2 3
Curvy Hip tilt Straigh
shape shape tshape
Count 276 488 595 1,359

Total

18 to 25
Age © % . 100.0%
group Count 451 379 299 1,129
26 to 35
© % . 100.0%
Total Count 727 869 894 2,488
% 00.0%
Table 11
Body shape group
1 2 3
Curvy Hiptilt Straigh Total
shape shape tshape
Caucasian Count 438 318 413 1,169
0 0
Ethnic C : t | 74 181 172 | 10402.36
spanic o, - 100.0%
African Count 81 209 126 416
American % - 100.0%
Count 134 159 183 476
Others :
% - 100.0%
Total 727 867 894 2,488
Total

%

- 100.0%

FIG. 13
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Table 12
Wilks' .
Test of Lambd _Ch© df sig.
Function(s) a square
1 through 2 192 4094.964 18 .000
2 464 1904.455 8 .000
Table 13
Function Eigenvalu % of Cumulative Canonical
e Variance % Correlation
1 1.418 55.1 55.1 .766
2 1.155 44 9 100.0 732
Table 14
. Function
Variable
1 2
a Front arc: Top Hip — Waist -.143 357
b Girth: Top Hip — Waist -.011 327
c Front arc: Hip — Waist -.386 .023
d Width: Hip — Waist -197 191
e Girth: Hip — Top Hip -.165 -.258
f Buttocks angle .089 017
g  Depth: Hip — Waist .858 544
h- Front Depth: Abdomen — 2324 1522
Waist
[ Front Depth: Abdomen — Hip 2.158 1.420
Constant 2493  -5.740

FIG. 14
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Table 15
Predicted group
membership Total
1 2 3
1 703 10 14 727
. Count 2 4 853 10 867
OJ:%L";' 3 11 13 870 894
membership 1 100.0
% 2 100.0
3 100.0

FIG. 15
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Table 16
F-value Mean

Type Type Group Type Group Judge
X

Type Group Judge X %
Group Judge Judge A B 1 2 3 1 2 3

24.085 * 3.260
p= 82 (p= 213 2431 471 3.61 3.033.44 3.15 3.35 3.373.46 3.11
.000) .041)
Table 17
Test of Model Effect (p-value) Estimated Marginal Mean
Area Type Type Group Type Group  Judge

TypcGroupJudge  x X X

Group Judge Judge * B 1 2 3 1 23

66 512 119 .118 74 .85.90.84 .76 .72
750 992 625 59.56.73.75 .50.62
287 795 83.52.71.58 .46 .89
070 .62 85.83.70.92 .66 .74

666 235 278 .40.37.46.37.33 .44 28 44
922 346 762 .52.46 .44 .46 .56 .50 43 .54
462 038 753 .54.38.43 .53 .42.67 .21 .54
543030 979 23.31.42.20.21.48.08 .38
505 .006 354 .63.61.65.49.72.74 .58 .54
914 012 363 .19.34.21.18.39.18.39 .21
199 390 644 33.21.27.29.14 44
961 621 316 48 .58 .58 .56 .37.71
399 147 733 50.53.49 .43 .33.75

Abdomen ease )
Buttocks ease 558 .53
Front crotch ease A71 .
Back crotch ease 415 .
Front thigh ease 848 .
Back thigh casc

FIG. 19
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Table 18
Type
Group A B ‘

1 93 48 4.000

2 .89 52 3.407

3 .85 74 0.11 1.000

1 74 .37 3.058

2 81 .30 4.647

3 .89 48 3.328

1 78 74 0.04 440 26 663

2 52 48 0.04 328 26 746

3 .78 52 2.054

1 .81 81 .000

2 .96 .63 3.122

3 78 .56 2.280

1 A48 44 0.04 273 26 787
éi‘e’fv‘)’me“ ease (Front > 44 30 015 1072 26 294

3 .30 37 -0.07 -.527 26 .602

1 44 44 0.00 .000 26 1.000
Buttocks ease (back view) 2 52 41 0.11 .769 26 .449

3 .59 52 0.07 493 26  .626

1 .44 48 -0.04 -.296 26 769
Front crotch ease 2 .67 41 0.26 1.763 26 .090

3 52 37 0.15 1.162 26 256

1 A48 44 0.04 328 26 746
Back crotch ease 2 .19 33 -0.15 -1.162 26 256

3 .30 22 0.07 .570 26 574

1 .63 .63 0.00 .000 26 1.000
Front thigh ease 2 .56 41 0.15 1.072 26 294

3 .63 78 -0.15 -1.162 26 236

1 22 30 -0.07 -.570 26 574
Back thigh casc 2 1 26 -0.15 -1.688 26 .103

3 33 48 015 -1.442 26 .161

1 .56 A5 3.051

2 .30 19 0.11 1.140 26 265

3 .30 30 0.00 .000 26 1.000

1 .44 52 -0.07 -.700 26 .490
Inseam length 2 .56 59 -0.04 -.570 26 574

3 .56 .59 -0.04 -.570 26 574

1 78 22 4.507

2 .81 22 4.841

3 .89 A1 9.539

FIG. 20
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1
BODY SHAPE ANALYSIS METHOD AND
SYSTEM

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application is a national stage application under 35
U.S.C. §371 of PCT Application No. PCT/US2011/062904,
filed Dec. 1, 2011, which claims priority to and the benefit of
U.S. provisional patent application Ser. No. 61/418,683,
entitled Body Shape Analysis Method, filed Dec. 1, 2010,
which is incorporated herein by reference in its entirety.

STATEMENT REGARDING FEDERALLY
SPONSORED RESEARCH OR DEVELOPMENT

The disclosed invention was made with government sup-
port under contract no. ITA-08-07400 from the National Tex-
tile Center. The government has rights in this invention.

1. TECHNICAL FIELD

The present invention relates to methods for three-dimen-
sional body scanning to improve the fit of clothing. The
invention also relates to methods for categorizing body
shapes to improve the fit of clothing.

2. BACKGROUND OF THE INVENTION

Three-dimensional (3D) body scanning technology has
shown the potential of providing data that can be used to
improve the fit of clothing. 3D body scanners can automati-
cally generate a set of over 100 measurements in a short time
(5 to 15 seconds for the scan, 1 to 2 minutes to generate
measurements), and therefore they have been used for several
large-scale anthropometric surveys in the U.K., the U.S.,
Germany, Japan, Korea, and Thailand. Up-to-date anthropo-
metric data assists ready-to-wear apparel companies to iden-
tify sectors of the market, and update their sizing systems to
provide good fit for their target market customers. Mass cus-
tomization and automated custom clothing have recently
been regarded as an additional way for the apparel industry to
address consumer complaints about garment fit; 3D body
scanners are useful tools in implementing these processes.
Apparel companies such as Brooks Brothers, Lori Coulter,
and C&A have produced custom-made garments using mea-
surements taken from a 3D body scanner. By providing fit that
is individualized on the basis of the customer’s objective body
measurements, these apparel companies provide improved fit
for each customer.

Other apparel companies have created online custom
clothing services by having the customer self-report his or her
measurements. Archetype Solutions is a representative ser-
vice provider for online made-to-measure apparel compa-
nies. They have developed a simple and intuitive ordering
process that allows the consumer to order a garment based on
their self-measurements, perceived body shapes, and style
preferences in a few minutes over the internet. JCPenney,
Land’s End, QVC, and indiDenim have utilized similar order-
ing processes for women/men’s Chino pants or jeans, or
men’s dress shirts.

In the apparel industry, body type, sometimes referred to as
“body shape,” has increasingly been recognized as a funda-
mental factor to a good fit. Apparel companies such as Gap
Inc. and The Limited provide ‘Straight’ and ‘Curvy’ pants
styles for customers with different lower body types. Zafu is
an online size selection company which offers recommenda-
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tions on which jeans are likely to fit the user best among 90
denim brands on the basis of a user’s body shape and previous
fit problems with their jeans. Zafu spent over six years
researching and understanding body types, tested hundreds of
pairs of jeans on 11,500 women, and developed a ‘shape
matching’ technology. They found that women with identical
hip measurements can have totally different body types,
resulting in different fit problems. Only 6% of women have
the same body type as the typical tall and slim fit model, but
the problem is that most jeans companies consider these
women ‘average’. Zafu claims that their body type-based
recommendations make it possible for 94% of 5,872,964
users to find their “perfect” jeans, but online return rates of
apparel merchandise are generally about 50%.

Body type is also recognized to be a factor in creating
custom-fit solutions. Staples was the first researcher in the
U.S. to create different patterns designed for different body
types for base block patterns while developing U.S. army
men’s dress uniforms in 2000. In Archytype’s custom order-
ing process, customers are asked to specify their own body
type from pictures of basic silhouettes and a text description
in addition to their self-reported measurements. Automated
made-to-measure computer-aided design programs (e.g.,
AccuMark MTM of Gerber Scientific, FitNet of Lectra Sys-
tems, and MtM.assyst of Assyst GmbH), may also benefit
from use of body type information Simmons, Istook, and
Devarajan felt that customization could be improved if it
started from the most correctly shaped garment for each cus-
tomer’s body type. Ashdown and Dunne noted that the accu-
racy of body chart data, reliability of body measurement data,
and fit preferences are critical elements in a system designed
to automate patternmaking (Ashdown, S. P., and Dunne, L., A
Study of Automated Custom Fit: Readiness of the Technol-
ogy for the Apparel Industry, Clothing Textiles Res. J. 24(2),
121-136 (2006)). However, even after three iterative correc-
tions of all these issues, these researchers found that only
seven of ten custom-made garments from the system pro-
vided good fit. This limitation of automated custom system
was also observed previously by the inventors when they
worked with two large sportswear companies to develop auto-
mated custom-made systems for jacket and pant styles. Exist-
ing systems could not generate custom-made patterns with
consistent good fit for these garments even after corrections
of all issues enumerated in Ashdown and Dunne’s study. In
the custom jacket studies, when the hip girth was determined
as a primary measurement for initiating the custom fit pro-
cess, the fit at the bust was poor although the fit at the hip was
appropriate. In contrast, when the bust girth was set as a
primary measurement, the fit at the bust was appropriate, but
the fit at the hip was not good. The custom-made clothing had
especially poor fit for those people with a body type different
from that of the fit model for the base pattern, resulting in a
different silhouette, since this situation created the need for an
extreme pattern alteration in a specific area.

Citation or identification of any reference in Section 2, or in
any other section of this application, shall not be considered
an admission that such reference is available as prior art to the
present invention.

3. SUMMARY OF THE INVENTION

A computer-based method is provided for categorizing
body shape comprising the steps of:

providing a data set of body shape-defining measurements
ofaportion ofthe body ofinterest from a plurality of subjects’
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bodies, wherein the measurements define a silhouette and
profile (front and side) perspectives of the portion of the body
of interest;

conducting a principal component (PC) analysis of the data
set of measurements to calculate and generate PC scores;

conducting cluster analysis using the PC scores as inde-
pendent variables to produce cluster analysis results; and

establishing one or more body shape categories from the
cluster analysis results, thereby categorizing body shapes of
the plurality of subjects.

In one embodiment, the method can comprise the step of
identifying different body shapes from the cluster analysis
results.

In another embodiment, the body shape-defining measure-
ments are derived from 3D body scans.

In another embodiment, the body shape-defining measure-
ments are selected from the group consisting of girth, width,
front arc, back arc, front depth, back depth, length, length
proportion and drop value between two measurements of
primary body locations.

In another embodiment, primary body locations from
which shape-defining measurements can be taken can
include, but are not limited to, upper body areas such as chest,
bust, underbust, acromion and shoulders; lower body areas
such as waist, high hip, hip, crotch, buttocks and abdomen;
areas of the extremities such as thigh, kneecap, calf, ankle,
foot, bicep, elbow, forearm and wrist; and neck and head.

In another embodiment, the method can comprise the step
of conducting a discriminant analysis to classify body shapes
identified from the cluster analysis results.

In another embodiment, the method can comprise the step
of identifying one or more discriminant functions that define
body shape category.

In another embodiment, the method can comprise the step
of calculating one or more discriminant function score from
an individual subject, thereby determining the individual sub-
ject’s body shape category.

In another embodiment, the method can comprise the step
of determining a range of discriminant function scores for
each body shape group.

In another embodiment, the method can comprise the step
of calculating one or more discriminant function scores from
the body-shape defining measurements of the individual sub-
ject.

In another embodiment, the method can comprise the step
of comparing the individual subject’s calculated discriminant
function scores with the range of discriminant function scores
for each body shape group.

In another embodiment, the method can comprise the step
of utilizing multiple measurements that categorize silhouette
and profile views of the body simultaneously.

In another embodiment, the method can comprise the step
of using drop values of body-shape defining measurements.

In another embodiment, the body-shape defining measure-
ments are derived from 3D body scans.

In another embodiment, the method can comprise the step
of utilizing a buttocks angle and a plurality of proportional
measures of widths, depths, front/back depths, girths, and/or
front/back girths of lower body locations of interest.

In another embodiment, the method can comprise the step
of categorizing one or more lower body shape groups by
K-means cluster analysis using one or more PC scores and/or
one or more z-scores.

A shape prototyping system is also provided for designing
a custom fit garment for an individual subject. In one embodi-
ment, the system can comprise:
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(a) a data set of body-shape defining measurements (e.g.,
widths, breadths, depths, arc measurements, circumferences,
angles, and proportions of these measures) from a plurality of
people representative of a population of interest to character-
ize the spectrum of body shapes and postures for which the
custom fit garment is to be designed

(b) a computer-based method for analysis of the measure-
ments, wherein the computer-based method determines one
or more prototype body shapes that identify or quantify a
spectrum of shapes and postures that represent the population
of interest;

(c) an adaptable guiding pattern for creating a parameterized
pattern, wherein the adaptable guiding pattern comprises a
structural form and a set of customizable distance and angle
parameters, and wherein parameter values are matched to
dimensions of the individual subject so that the parameterized
pattern will specify a good-fit garment for the individual
subject;

(d) computer-based method for creating a set of modified
guiding patterns from the adaptable guiding pattern wherein
each ofthe set of modified guiding patterns is matched to each
of the prototype body shapes identified in (b);

(e) a method for identifying the appropriate body-shape pro-
totype guiding pattern for the individual subject’s set of body
shape-defining measurements; and

() a method for producing a parameterized pattern from a
modified guiding pattern, comprising the step of establishing
the modifying guiding pattern distance and angle parameters
for the selected guiding pattern from the individual subject’s
set of body shape-defining measurements.

In one embodiment, the method of (f) can comprise a
method for producing a conventional pattern from which the
custom-fit garment can be made from the parameterized pat-
tern.

In another embodiment, the computer-based method of (b)
comprises conducting principle component (PC) analysis of
the body shape-defining measurements to derive principle
components (PCs) and conducting an unsupervised cluster-
ing algorithm on the PCs.

In another embodiment, the method of (f) is refined empiri-
cally by analyzing a range of size adjustments and/or using a
panel of experts to determine good-fit outcomes by observing
garment fit on a set of fit models.

A system for computer-assisted designing of a custom fit
garment for an individual subject is also provided. In one
embodiment, the system can comprise:

(a) an adaptable guiding pattern, wherein the adaptable guid-
ing pattern comprises a structural form and a set of customi-
zable distance parameters for creating a parameterized pat-
tern, and wherein the values of the parameters are matched to
body shape (i.e., detailed dimensions) of the subject so that
the parameterized pattern specifies a good-fit garment for that
individual,

(b) a machine learning system for predicting a set of subject
distance parameters for the guiding pattern given a set of
body-shape defining measurements taken from the subject;
(c) a computer algorithm for combining a subject’s distance
parameters with the structural form of the guiding pattern to
produce a conventional pattern from which the custom-fit
garment can be made; and

(d) a documented database for training the machine learning
system, wherein the documented database is associated with
each modified guiding pattern, and wherein the database
comprises multiple tuples of distance parameter values, asso-
ciated distance parameters, and good-fit outcomes.

In one embodiment, the guiding pattern can be altered to
correct and balance the pattern for a specific body type.
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In another embodiment, the documented database com-
prises good and poor good-fit outcomes.

In another embodiment, the documented database is cre-
ated by testing a range of predictions and/or using a panel of
experts to determine good-fit outcomes by observing garment
fit on a set of fit models.

A method for shape prototyping for design of custom fit
clothing is also provided. In one embodiment, the method can
comprise the steps of:

(a) providing a full set of body measurements (widths,
breadths, depths, arc measurements, circumferences, angles,
and proportions of these measures) from a plurality of people,
wherein the plurality is representative of a population of
interest and wherein the full set of body measurements from
the plurality is representative of a spectrum of body shapes
and postures for which a garment is to be designed;

(b) computer-analyzing the full set of body measurements,
wherein the analyzing step comprises the step of determining
one or more prototype body shapes and wherein the prototype
body shape quantifies the body measurements of a subset of
the members of the plurality of people;

(c) providing a first adaptable guiding pattern, wherein the
first adaptable guiding pattern comprises a structural form
and a set of customizable distance and angle parameters; and
(d) producing a parameterized pattern, wherein the producing
step comprises matching the values of the customizable dis-
tance and angle parameters of the adaptable guiding patternto
corresponding values derived from an individual person of
interest (e.g., a customer) and wherein the parameterized
pattern specifies a good-fit garment for the individual person
of interest.

In one embodiment, the method can further comprise,
between step (¢) and step (d), the step of:
creating a set of modified adaptable guiding patterns from the
first adaptable guiding pattern, wherein each modified guid-
ing pattern in the set is matched to one of the one or more
prototype body shapes identified in (b).

A system for shape prototyping for design of custom fit
clothing is also provided. In one embodiment, the system can
comprise:

(a) a full set of body measurements (widths, breadths, depths,
arc measurements, circumferences, angles, and proportions
of these measures) from a plurality of people, wherein the
plurality is representative of a population of interest and
wherein the full set of body measurements from the plurality
is representative of a spectrum of body shapes and postures
for which garments are to be designed;

(b) amethod for analyzing these measurements using a com-
puter, wherein the method comprises the step of determining
one or more prototype body shapes, wherein the prototype
body shape quantifies the body measurements of a subset of
the members of the plurality of people;

(c) an adaptable guiding pattern, wherein the adaptable guid-
ing pattern comprises a structural form and a set of modifiable
(customizable) distance and angle parameters, wherein the
values of the modifiable (customizable) distance and angle
parameters can be matched to detailed dimensions of an indi-
vidual person of interest (e.g., a customer), thereby yielding a
parameterized pattern customized for the individual person of
interest; and

(d) the parameterized pattern, wherein the parameterized pat-
tern specifies a conventional pattern for a good-fit (or custom-
fit) garment for the individual person of interest.

A computer-based method is also provided for identitying
the appropriate body-shape prototype guiding pattern for an
individual person’s (e.g., customer’s) set of measurements. In
one embodiment, the method comprises the step of computer-
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analyzing a full set of body measurements wherein the step of
computer-analyzing comprises the steps of:

conducting a principle component analysis (PCA) of all mea-
surements in the set of body measurements;

obtaining principle component measurements from the PCA;
and

performing an unsupervised clustering algorithm on the most
significant principle components, thereby obtaining one or
more prototype body shapes.

The full set of body measurements (widths, breadths,
depths, arc measurements, circumferences, angles, and pro-
portions of these measures) can be obtained from a plurality
of people, wherein the plurality is representative of a popu-
lation of interest and wherein the full set of body measure-
ments from the plurality is representative of a spectrum of
body shapes and postures for which garments are to be
designed. Anindividual person’s measurements may be taken
by hand or by using computer analysis of a 3D body scan.

A computer-based method is also provided for producing a
conventional pattern from which a custom-fit garment can be
made for an individual person of interest (e.g., a customer). In
one embodiment, the method can comprise the steps of:
producing a parameterized pattern comprising determining
distance and angle parameters for an adaptable guiding pat-
tern from a set of measurements from the individual person,
and producing a conventional pattern from the parameterized
pattern.

4. BRIEF DESCRIPTION OF THE DRAWINGS

The present invention is described herein with reference to
the accompanying drawings, in which similar reference char-
acters denote similar elements throughout the several views.
It is to be understood that in some instances, various aspects
of the invention may be shown exaggerated or enlarged to
facilitate an understanding of the invention.

FIG. 1. Examples of body shape-defining characterizations
and measurements: Waist Front X, Waist Back X, Buttocks
Back X, Abdomen Front X, Side seam line. Depth measure-
ment, i.e., the distance between the abdomen prominence
point and buttocks prominence point, can be calculated by
subtracting ‘Buttocks Back X’ from ‘Abdomen Front X’.

FIG. 2. Measurement procedures and landmarks used to
derive SizeUSA data from body scans for the measurements
used in the final analysis described in Section 6.1, Example 1.
A total of 14 drops and 1 angle were calculated: Drop values
of girths (hip to waist, top hip to waist, and hip to top hip
{1-3}), drop values of back arcs (hip to waist, top hip to waist,
and hip to top hip {4-6}), drop values of front arcs (hip to
waist, top hip to waist, and hip to top hip {7-9}), drop values
of widths (hip to waist {10}), drop values of depths (hip to
waist {11}), drop value of back depths (hip to waist {12}),
and drop values of front depths (abdomen to waist, and abdo-
men to hip {13-14}), and buttocks angle {15}.

FIG. 3. Each principal component (PC) can clearly repre-
sent a distinctive shape from either the silhouette or profile
view of the body. In the embodiment shown here, PC1, PC2,
PC3, Z-score 1 and Z-score 2 are indicated.

FIG. 4. Diagram showing how the means of each principal
component (PC) and z-scores compare among the three body
shape groups described in Section 6.1, Example 1.

FIG. 5. Three-dimensional (3D) images of fit model
examples discussed in Section 6.1, Example 1. To generate fit
model examples, 3D scan files were selected that represent
each body shape. The 3D images were manipulated and
refined to represent each silhouette in the three directions
(front/side/back) most effectively. These silhouettes were
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adjusted to match the calculated average key measurements
for each group. Front silhouettes and profile sketches of each
lower body shape group are also shown for comparison.

FIG. 6. Scatterplot for predicting an individual’s group
membership in Group 1, 2 or 3 as described in Section 6.1,
Example 1. A new person’s group membership can be pre-
dicted by calculating her Discriminant Score from Function 1
(DF1) score and Discriminant Score from Function 2 (DF2)
score, and comparing these scores with this scatterplot.
Group 1 tends to have a positive DF1 score and a positive DF2
score. Group 2 has a negative DF1 score, but the DF2 score
can be either positive or negative. Group 3 can have either a
positive or negative DF1 score, but a negative DF2 score.

FIG. 7. Table 1. Measurement procedures and body land-
marks. See Section 6.1, Example 1 for details.

FIG. 8. Table 2. Descriptive statistics of 15 body shape
variables. For mean and range of 14 variables (except for
buttocks angle), ‘inch’ unit is also added in parentheses next
to ‘centimeter’ unit. Table 3. Size distribution of subjects aged
1810 35 in SizeUSA data. For waist girth and hip girth, ‘inch’
unit is also added in parentheses next to ‘centimeter’ unit. See
Section 6.1, Example 1 for details.

FIG. 9. Table 4. Total variance explained from Pre-PCA1.
The total amount of variations in the sample is 15. Table 5.
Rotated component matrix of Pre-PCAl. See Section 6.1,
Example 1 for details.

FIG. 10. Table 6. Rotated component matrix of Pre-PCA2
with 12 variables retained. Table 7. Rotated component
matrix of Final PCA. See Section 6.1, Example 1 for details.

FIG. 11. Table 8. Mean and standard deviation of PC and
z-score variables for three body shape groups. Means were
ranked by a, b, and ¢ ordered by the magnitude of the value. *
p<0.05. See Section 6.1, Example 1 for details.

FIGS. 12A-B. Table 9. Mean and standard deviation of
three body shape groups on twelve body measurements.
Means were ranked by a, b, and ¢ ordered by the magnitude of
the value. For mean of 12 variables (except for buttocks
angle), ‘inch’ unit is also added in parentheses next to ‘cen-
timeter’ unit. * p<0.05. See Section 6.1, Example 1 for details.

FIG. 13. Table 10. Cross tabulation of age group and body
shape group. Table 11. Cross tabulation of ethnic group and
body shape group. See Section 6.1, Example 1 for details.

FIG. 14. Table 12. Wilks* Lambda. Table 13. Eigenvalues
of functions. Table 14. Canonical discriminant function coef-
ficients. See Section 6.1, Example 1 for details.

FIG. 15. Table 15 Classification results. Overall 97.5% of
original grouped cases were correctly classified.

FIGS. 16A-B. (a) Pentagonal graphs of 10 fit model can-
didates among participants in group 1, (b) Pentagonal graph
of fit models of body group 1, 2, and 3.

FIG. 17. Diagram of final three block patterns and industry
pattern.

FIG. 18. Selected front, side and back view photos. Type A:
Pants made by body shape driven customization method.
Type B: Pants made by standard customization method.

FIG.19. Table 16. F-values and means of overall fit derived
from linear mixed models (LMM). 5-point scale for overall
fit: 1 (very bad), 2 (bad), 3 (neutral), 4 (good), and 5 (very
good). Type A: Pants made by body shape driven customiza-
tion method. Type B: Pants made by standard customization
method. Table 17. Expert judges’ evaluation: p-values and
means of fit scores at body locations derived from generalized
estimating equations (GEE). 2-point scale for fit: 0 (bad fit)
and 1 (good fit). Type A: Pants made by body shape driven
customization method, Type B: Pants made by standard cus-
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tomization method. Cells of effects that had significance
(p<0.05) are shaded. Fonts are bold if type A had higher fit
ratings than B.

FIG. 20. Table 18. Expert judges’ evaluation: Pairwise
comparison of means of fit scores of types according to
groups derived by paired t-test. 2-point scale for fit: 0 (bad fit)
and 1 (good fit). Cells of effects which had significance
(p<0.05) were shaded, and fonts were bolded if type A had
higher fit ratings than B.

FIG. 21. Flow diagram showing system organization for
automated good-fit customization.

FIG. 22. Schematic diagram of a computing device which
can be used in connection with the methods disclosed herein.

5. DETAILED DESCRIPTION OF THE
INVENTION

A categorization method for lower body shapes is pro-
vided, which uses principal component analysis (PCA) and
cluster analysis for identifying body shapes reliably and
objectively. In one embodiment, a computer-based method
for categorizing body shape is provided comprising the steps
of:

providing a data set of body shape-defining measurements
ofaportion ofthe body ofinterest from a plurality of subjects’
bodies, wherein the measurements define a silhouette and
profile (front and side) perspectives of the portion of the body
of interest;

conducting a principal component (PC) analysis ofthe data
set of measurements to calculate and generate PC scores;

conducting cluster analysis using the PC scores as inde-
pendent variables to produce cluster analysis results; and

establishing one or more body shape categories from the
cluster analysis results, thereby categorizing body shapes of
the plurality of subjects.

The method uses multiple measurements that can catego-
rize silhouette and profile views of the body simultaneously.
In another embodiment, the measurements can be derived
from body scan data. Use of drop values of complex body
measurements derived from 3D body scans make it possible
to use PCA to identify components that classify body shape
and not size.

In another embodiment, the method uses buttocks angle
and fifteen proportional measures of widths, depths, front/
back depths, girths, and front/back girths of key lower body
locations. In another embodiment, lower body shape groups
can be categorized by K-means cluster analysis using three
PC scores and two z-scores, and all individuals can be
assigned to one of three lower body shape groups. In another
embodiment, to classify the body shape of an individual from
body scan measurements, a discriminant analysis is con-
ducted and discriminant functions consisting of several raw
measurements are developed. In a specific embodiment, an
individual is classified by calculating their function scores
and comparing them with the range of function scores of each
body shape group. This method can be used to classify any
body shape known in the art, including but not limited to,
lower body shapes, upper body shapes and body shapes of
target markets of different ages, sexes, or ethnicities.

For clarity of disclosure, and not by way of limitation, the
detailed description of the invention is divided into the sub-
sections set forth below.

5.1 Methods for Body Shape Categorization

A method for body shape categorization is provided. This
method can be employed, for example, in a system for alter-
ing differently shaped block patterns to correct and balance
the patterns for a specific body type. The method and system
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improve the automated customization system for automated
custom patternmaking and can be used to categorize body
shape of people of different ages, sexes, or ethnicities.

By way of background, traditional methods of fitting and
pattern alteration are well known in the art (see, e.g., Liechty,
E. G, Pottberg, D. N, & Rasband, J. A. (1992). Fitting and
Pattern Alteration: A Multi-Method Approach. New York:
Fairchild Fashion and Merchandising Group). Further by way
of background, four major methods female body shape cat-
egorization are known in the art: (a) proportions of front
and/or side silhouettes (Connell, L. J., Ulrich, P. V., Brannon,
E. L., Alexander, M., and Presley, A. B., Body Shape Assess-
ment Scale: Instrument Development for Analyzing Female
Figures, Clothing Textiles Res. J. 24(2), 80-95 (2006)), (b)
proportions of body circumference measurements (Staples N.
J., Fit 2000: The Fit Symposium, 2000 [accessed August,
2001], http://car.clemson.edu/fit2000), (c) linear multiple
regression analysis (O’Brien, R., and Shelton, W. C., Wom-
en’s Measurements for Garment and Pattern Construction,
Bureau of Home Economics, Textiles and Clothing Division,
Miscellaneous Publication, No. 454, US Department of Agri-
culture and Work Projects Administration, Washington, D.C.,
USA (1941); Churchill, E., Churchill, T., McConville, J. T.,
and White, R. M., Anthropometry of Women of the U.S.
Army-1977, Report no. 2, U.S. Army Research and Develop-
ment Command, USA (1977)), or (d) principal component
analysis (Green, M. E., An application of U.S. Army Wom-
en’s Anthropometric Data to the Derivation of Hypothetical
Sizing/tarrifing Systems, Clothing Res. J. 9, 16-32 (1981);
Salusso-Deonier, C. J., Delong, M. R., Martin, F. B., and
Kohn, K. R., A Multivariate Method of Classifying Body
Form Variation for Sizing Women’s Apparel, Clothing Tex-
tiles Res. J. 4(1), 38-45 (1985); Salusso, C. J., Borkowski, J.
J., Reich, N., and Goldsberry, E., An Alternative Approach to
Sizing Apparel for Women 55 and Older, Clothing Textiles
Res. J. 24(2), 96-111 (2006)). No equivalent studies of male
body type have been conducted. Tailor’s methods exist based
on subjective analysis and experience fitting a range of body
types that focus on posture (such as rounded shoulders) or
basic linear body proportions (see, e.g., Boswell, S., 1993,
Menswear: Suiting the Customer. Regents/Prentice Hall, NJ.

The first method (a) is related to the visual method of shape
determination. A method described by Connell et al. (Con-
nell, L. J., Ulrich, P. V., Brannon, E. L., Alexander, M., and
Presley, A. B., Body Shape Assessment Scale: Instrument
Development for Analyzing Female Figures, Clothing Tex-
tiles Res. J. 24(2), 80-95 (2006)) developed nine scales for
body shape assessment from front and side views. Three
scales (body build, body shape, and posture) were for whole
body analysis, and six scales (front torso shape, hip shape,
shoulder slope, bust shape, buttocks shape, and back curva-
ture) were for analysis of component body parts. Only one
body projection onto the view plane can be evaluated at a
time, and therefore the analysis can be misleading, as bodies
with the same front projection can have significantly different
side projections and vice versa. Traditional garment pattern
construction relies on circumferential and arc body measure-
ments. Therefore, body shape categorization with compari-
sons of widths and depths from the view plane are not as
directly related to patternmaking as categorization based on
body circumferences.

The second method of categorization (b) is based on cir-
cumference measurement ratios between bust, waist, high
hip, abdomen, and hip. Simmons created one body shape
categorization system of this type (Simmons, K. P., Istook, C.
L., and Devarajan, P., Female Figure Identification Technique
(FFIT) for Apparel, Part II: Development of Shape Sorting
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Software, J. Fashion Mark. Manage. 4(1), 1-15 (2004)). How-
ever, bodies with the same circumferential proportions may
differ in width/depth proportion, or in some other shape-
defining measurements, such as angles, or anterior/posterior
variation defined in arc measurements, rendering the circum-
ferential proportion definition unable to differentiate shapes
completely (Watkins, S. M., “Clothing: The Portable Envi-
ronment,” (2nd Edn.), lowa State University Press, lowa,
USA (1995)). A more elaborate combination of circumfer-
ence/arc proportions along with width/depth proportions may
be needed to define lateral body shape fully.

The third method (c), which uses multiple regression
analysis to define body shape, is based on the assumption that
people have a certain combination of measurements at key
body locations. Two key dimensions are selected to identify
body type (e.g., stature, bust girth, waist girth or hip girth) by
the drop, or the difference between the two dimensions to
represent a specific body proportion. Other body measure-
ments are then calculated from these initial key dimensions
using multiple regression functions. Most current sizing sys-
tems are made using this method. The International Organi-
zation for Standardization (ISO) published Technical Report
ISO/TR 10652:1991 presenting guidelines for creating a siz-
ing system based on anthropometric data of a particular popu-
lation for nations. They classified figure types based on bustto
hip drop values into A type (9 cm), M type (4 to 8 cm), and H
type (3 to -4 cm or greater) (International Organization for
Standardization, ISO/TR 10652, Standard sizing systems for
clothes (1991)). Several countries such as Germany, Japan,
Korea and Hungary utilized this method for creating their
national sizing systems. In Germany, the height and hip types
defined nine figure types. Heights were grouped into average
height, short and tall. Each group is divided into three hip
types; slim hip, average, and full hip type (DOB-Verband,
Women’s outer garment size chart (1983)). Japanese Stan-
dards Association defined body shapes by height and bust to
hip drop (A, Y, AB, and B) (JIS L. 4005:2001 Sizing Systems
for Women’s Garments) (Japanese Standards Association,
JIS L 4005:2001 Sizing systems for women’s garments
(2001)). Korea also classified body types by height and bust to
hip drops (KS K0051:2009 Sizing systems for female adult’s
garments) (Korean Standard Association, KS K 0051:2009
Sizing systems for female adult’s garments (2009)). This
method is limited in the number of measurements that can be
used for body categorization.

The last method (d) utilizes principal component (PC)
analysis, which reduces the number of variables by combin-
ing similar variables into new composite dimensions called
principal components (PCs). Previous work using this
method has utilized girths, front/back arcs, lengths, and
heights as independent variables for the whole body shape
analysis, and the result showed that PC1 and PC2 were related
to either horizontal measurements or vertical measurements
(Green, M. E., An application of U.S. Army Women’s
Anthropometric Data to the Derivation of Hypothetical Siz-
ing/tarrifing Systems, Clothing Res. J. 9, 16-32 (1981);
Salusso-Deonier, C. J., Delong, M. R., Martin, F. B., and
Kohn, K. R., A Multivariate Method of Classifying Body
Form Variation for Sizing Women’s Apparel, Clothing Tex-
tiles Res. J. 4(1), 38-45 (1985); Salusso, C. J., Borkowski, J.
J., Reich, N., and Goldsberry, E., An Alternative Approach to
Sizing Apparel for Women 55 and Older, Clothing Textiles
Res. J.24(2),96-111 (2006)). A combination of PC1 and PC2
could represent different body shapes. However, this analysis
tended to collect most of vertical measurements (heights and
lengths) under one PC, and most of the horizontal measure-
ments (girths and front/back arcs) under the other PC, which
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resulted in specific body shape characteristics such as waist
and hip relationships not being distinguished from one
another.

As discussed above, each of the current methods of catego-
rizing body shape is limited in some aspects. A method of
body shape categorization is provided herein that combines
both front and side perspectives of the body, that distinguishes
many different body relationships, and that uses objective
body measurements. According to the method, principal
component (PC) analysis is used to extract distinctive shapes
that describe and categorize the body fully in all dimensions.

In one embodiment, the method for categorizing body
shape comprises the steps of:

providing a data set of body shape-defining measurements
of'aportion ofthe body ofinterest from a plurality of subjects’
bodies, wherein the measurements define a silhouette and
profile (front and side) perspectives of the portion of the body
of interest;

conducting a principal component (PC) analysis of the data
set of measurements to calculate and generate PC scores;

conducting cluster analysis using the PC scores as inde-
pendent variables to produce cluster analysis results; and

establishing one or more body shape categories from the
cluster analysis results, thereby categorizing body shapes of
the plurality of subjects.

In another embodiment, the method comprises the step of
(1) classifying the shape of one particular section or portion of
the body, e.g., the lower body shape, rather than whole body
shape. For example, lower body shape can be classified
because: (a) customers are the least satisfied with the fit of
pants compared to all other apparel items (Charoensiriwath,
S., and Spichaikul, P., Constructing Thailand’s National
Anthropometrics Database Using 3d Body Scanning Tech-
nology, in “Proceedings of Pacific Neighborhood Consor-
tium Conference”, Taipei, Taiwan, 2009 [accessed April
2010], http://www.pnclink.org/pnc2009/chinese/ Abstract/
08-Unfoldinge-Culture/08_UnfoldingeCulture_Abstract_
PiyawutSrichaikul. pdf; DOB-Verband, Women’s outer gar-
ment size chart (1983)) and (b) many of the made-to-measure
apparel companies currently provide pants as a custom gar-
ment style ([TC]?, Custom Clothing, 2009 [accessed April
2010], http://www.tc2.com/news/3 dbody.html).

The method can also comprise the step of including various
types of shape-defining measurements, such as width, front/
back depth, arc measurements and the drop values between
measurements of primary body locations (i.e., body land-
marks or locations of interest) instead of simple circumfer-
ence and length measurements. Primary body locations from
which shape-defining measurements can be taken are well
known in the art, and include, but are not limited to, upper
body areas such as chest, bust, underbust, acromion and
shoulders; lower body areas such as waist, high hip, hip,
crotch, buttocks and abdomen; areas of the extremities such
as thigh, kneecap, calf, ankle, foot, bicep, elbow, forearm and
wrist; and neck and head.

Cluster analysis can be conducted using the principal com-
ponent scores as independent variables to identify different
body shapes and create body shape categories.

A method is also provided for defining a new person’s body
shape group. A discriminant analysis can be conducted and
discriminant functions consisting of the appropriate body
measurements can be developed. This system provides
simple formulas for classification of an individual in a body
shape group, making it possible to compare their calculated
function scores with the range of function scores of each body
shape group.
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Measurement Selection

Although the following discloses methods for analyzing a
dataset comprising measurements obtained from women, it
will be appreciated by the skilled artisan that a dataset com-
prising measurements from men, boys or girls can also be
employed and analyzed.

In a specific embodiment, a dataset comprising measure-
ments from women aged 18 to 35 can be employed (e.g., the
SizeUSA dataset (McConville, J. T., “Anthropometry in Siz-
ing and Design”, Chapter VIII in Anthropometric Source
Book, Nasa Reference Publication 1024, Volume 1: Anthro-
pometry for Designers, National Aecronautics and Space
Administration, Washington, D.C., USA (1978)). Measure-
ments that are related to lower body shape analysis are
selected on the basis of two considerations: (a) front/back
arcs, widths, and front/back depths should be included for
more specific categorization of both silhouette and profile of
the lower body, unlike previous body shape analysis methods
based on ratios or drops of girth measurements only, (b)
measurements should be useful for application to pants pat-
tern making. Width and depth measurements are difficult to
apply to atraditional pattern making method, but they provide
direct measures defining the silhouette and profile of the
body. Therefore, all of these measures can be used: girths,
front/back arcs, widths, and. Length measurements (waist to
hip height, waist to abdomen height, and waist to crotch
height) and length proportions (waist to hip height/waist to
crotch height, and waist to abdomen height/waist to crotch
height) can also be considered in calculations.

In one embodiment, only one depth measurement is used,
the distance between the abdomen prominence point and
buttocks prominence point, which can be calculated by sub-
tracting ‘Buttocks Back X’ from ‘Abdomen Front X’ (FIG. 1).
However, this measurement by itself may not represent the
degree of abdomen prominence and buttocks prominence in
relation to other body areas such as waist.

‘Front X’ and ‘Back X’ at the waist and hip level can be
generated (F1G. 1). The side seam location can be determined
by a plane centered at the mid-point between the abdomen
prominence point and buttocks prominence point. Front
depth, back depth, and full depth can be calculated at the waist
level and hip level. Girth, front arc, and back arc at the waist
level, top-hip level and hip level; girth at the max-thigh level;
and buttocks angle measurement can be selected from the
data set. In certain embodiments, other measurements,
including length measurements can also be included in the
analysis.

Section 6.1 (Example 1) sets forth an example of this
method. Since the method focuses on body shape analysis
regardless of body size, the strength of the relationship
between weight (a representative measurement related to
body size) and 33 variables (18 raw measurements and 15
drops) can be examined by running bivariate correlation
analysis (e.g., by using the statistical package SPSS 17.0). If
there is a weak linear relationship between weight and a
measurement, it can be considered a shape-related variable.

Linear relationships such as a curvature relationships not
revealed in single correlation calculation can also exist. Thus,
a regression analysis can be conducted with weight as a
dependent variable, and a variable and its square as indepen-
dent variables. If r value is significantly high (p<0.05), the
function [weight=a+bx(variable)+cx(variable)®] can be
judged to be meaningful; expressed as curvature relation-
ships.

Sample Selection

In one embodiment, percentiles of BMI (Body Mass
Index), waist girth measurement, and hip girth measurement
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can be calculated. Data can be sorted so that the dataset
contains measurements only from individuals that fit in a
desired clothing size range. Waist girth measurements and hip
girth measurements of known clothing sizes can also be com-
pared with the data set measurements. The percentile of BMI
can be compared with known BMI categories. Body Mass
Index (BMI) is a number calculated from a person’s weight
and height. BMI provides a reliable indicator of body fat and
is used to screen for weight categories. BMI Categories:
Underweight=<18.5, Normal weight=18.5-24.9, Over-
weight=25-29.9, Obesity=BMI value of 30 or greater (http://
www.nhlbi.nih.gov/guidelines/obesity/index.htm).

Measurements from body shapes that belong in a size
range other than the size range of interest can be eliminated.
In addition, outliers, whose measurements exceed three times
the standard deviation from the mean of the measurement can
be removed.

Body Classification Method

Statistical methods for body classification can include
principal component analysis (PCA) and cluster analysis.
Principal component analysis is a mathematical procedure
that transforms a number of possibly correlated variables into
a smaller number of uncorrelated variables called principal
components. Two major rotation systems for extracting prin-
cipal components are available: Orthogonal and Oblique. The
assumption of Orthogonal system is that each measurement is
correlated to each component, but components are not corre-
lated each other. On the other hand, the assumption of
Oblique system is that each measurement is not correlated to
each component, but components are correlated each other. In
a preferred embodiment, Varimax rotation method, a repre-
sentative method of Orthogonal coordinate system, can be
used, since it provides independence among principal com-
ponents. The decision on the number of components to be
retained can be made with consideration of three aspects: (a)
eigenvalues that correspond to the sum of the squared load-
ings for a principal component, (b) rotated component load-
ings, and (c) the number of variables that have high correla-
tions with each component.

With respect to eigenvalues, principal components prefer-
ably have eigenvalues greater than 1.0 (Kaiser-Guttman’s
standard) (Warner, R. M., Applied Statistics: From Bivariate
through Multivariate Techniques, Sage Publications, Los
Angeles, USA (2008)) and they are preferably large enough
to be distinguished from the rest of the principal components.

Each measurement should preferably have high compo-
nent loadings (correlation) with one principal component. Ifa
measurement is highly correlated with more than two com-
ponents, the analysis can be re-conducted with this measure-
ment removed.

Each principal component preferably has a minimum of
three variables. If a component has less than three variables,
the component should not be retained since it does not have
enough indicator variables. However, for variables that are
important for patternmaking and that represent a distinctive
body shape in the body shape category/portion of body being
analyzed (e.g., lower body shape), the z-score of the measure-
ment can be calculated and used in the cluster analysis as an
independent variable.

A z-score indicates how many standard deviations an ele-
ment is from the mean. A z-score can be calculated from the
following formula [z=(X-p)/c] where z is the z-score, X is
the value of the element, [ is the population mean, and ois the
standard deviation (Korean Standard Association, KS K
0051:2009 Sizing systems for female adult’s garments
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(2009)). Z-score 1 was “drop of front abdomen depth to waist
front depth’ and z-score 2 was ‘drop of front abdomen depth
to front hip depth’.

Using each principal component that clearly represents a
distinctive shape from silhouette and profile views of the
lower body, K-means cluster analysis can be conducted using
the principal component scores as independent variables to
categorize body shapes. In certain embodiments, data can be
classified, for example, into two to five clusters. The final
number of the clusters can be decided with the consideration
of a having a similar number of people in each cluster, sig-
nificant differences among clusters, and a reasonable number
of clusters for the specific population and for the specific
apparel-related outcome desired. To analyze whether clusters
are significantly different from one another, each body mea-
surement can be compared through Duncan’s multiple range
test of ANOVA post-hoc analysis.

An example of conducting a principal component analysis
(PCA) is described in Section 6.1, Example 1.

In certain embodiments, once final variables are selected,
an additional PCA can be performed with non-desired vari-
ables removed. PCs considered as appropriate for cluster
analysis are saved in the dataset and used for the cluster
analysis.

Cluster Analysis

K-means cluster analysis can be performed using final
variable PC scores and z-scores as independent variables to
categorize a body shape of interest. In a preferred embodi-
ment, three clusters that are determined to be most efficient
and/or appropriate to represent the body shape of interest are
selected and a 3-cluster model conducted, as described in
Section 6.1, Example 1, to categorize body shape group(s).

Three clusters may not be sufficient to fully represent com-
plex body shapes. Under certain circumstances, it can be
difficult to categorize the specific number of clusters since the
data are continuous, resulting in difficulty in dividing groups
into distinct clusters, an issue with any shape analysis system.
However, three clusters, in certain embodiments, can be the
most efficient cluster number when compared to two, four, or
five clusters.

In other embodiments, these methods can be used to
develop other body shape groups using different body mea-
surements or different numbers of clusters.

Prediction Method

Discriminant analysis can be used to classify body shapes
identified from the cluster analysis. The dataset preferably
includes body shape group memberships coded by the cluster
analysis as a ‘grouping variable’, and the measurements cor-
responding to principal components identified as ‘indepen-
dent variables’. The discriminant analysis can be performed
by stepwise-method, and measurements of interest can be
extracted that discriminate among groups. Once the discrimi-
nant functions are calculated, their significance and their per-
centage of the variances can be examined. To identify the rate
of predictive accuracy of the discriminant functions in clas-
sifying body shapes, the original group membership identi-
fied from the cluster analysis and the predicted group mem-
bership from discriminant functions can be compared. Means
of function scores and a scatter plot depicted by function
scores can be presented in any suitable presentation format
known in the art (e.g., graphical representation) to enable any
individual person to identify his/her body shape group.

A new person’s group membership can therefore be pre-
dicted by calculating her discriminant function score(s). To
identify the degree of predictive accuracy of the DFs in clas-
sifying individuals to one of the body shape categories, origi-
nal group memberships can be identified from cluster analy-
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sis and predicted group memberships can be classified from
the DFs, and the two results can be compared. Depending on
the results of this analysis, it can be determined whether
classification by calculation of the DFs is accurate enough to
predict body shape groups.

In Section 6.1, Example 1, results seen in Table 15 (FIG.
15) show that 97.5% of the women in the example were
classified in the same body shape group by discriminant
analysis. It was therefore considered that classification by
calculation of the two DFs discussed in Section 6.1, Example
1 were accurate enough to predict body shape groups.

5.2 System and Method for Shape Prototyping for Design
of Custom Fit Clothing

A method for shape prototyping for design of custom fit
clothing is also provided. In one embodiment, the method can
comprise the steps of:

(a) providing a full set of body measurements (widths,
breadths, depths, arc measurements, circumferences, angles,
and proportions of these measures) from a plurality of people,
wherein the plurality is representative of a population of
interest and wherein the full set of body measurements from
the plurality is representative of a spectrum of body shapes
and postures for which a garment is to be designed;

(b) computer-analyzing the full set of body measurements,
wherein the analyzing step comprises the step of determining
one or more prototype body shapes and wherein the prototype
body shape quantifies the body measurements of a subset of
the members of the plurality of people;

(c) providing a first adaptable guiding pattern, wherein the
first adaptable guiding pattern comprises a structural form
and a set of customizable distance and angle parameters; and
(d) producing a parameterized pattern, wherein the producing
step comprises matching the values of the customizable dis-
tance and angle parameters of the adaptable guiding patternto
corresponding values derived from an individual person of
interest (e.g., a customer) and wherein the parameterized
pattern specifies a good-fit garment for the individual person
of interest.

In one embodiment, the method can further comprise,
between step (¢) and step (d), the step of:
creating a set of modified adaptable guiding patterns from the
first adaptable guiding pattern, wherein each modified guid-
ing pattern in the set is matched to one of the one or more
prototype body shapes identified in (b).

A system for shape prototyping for design of custom fit
clothing is also provided. In one embodiment, the system can
comprise:

(a) a full set (data set) of body-shape defining measurements
(widths, breadths, depths, arc measurements, circumfer-
ences, angles, and proportions of these measures) from a
plurality of people, wherein the plurality is representative of
a population of interest and wherein the full set of body
measurements from the plurality is representative of a spec-
trum of body shapes and postures for which garments are to
be designed;

(b) a computer-based method for analyzing these measure-
ments, wherein the method comprises the step of determining
one or more prototype body shapes, wherein the prototype
body shape quantifies the body measurements of a subset of
the members of the plurality of people; and

(c) an adaptable guiding pattern for creating a parameterized
pattern, wherein the adaptable guiding pattern comprises a
structural form and a set of modifiable (customizable) dis-
tance and angle parameters, wherein the values of the modi-
fiable (customizable) distance and angle parameters can be
matched to detailed dimensions of an individual person of
interest (e.g., a customer), thereby yielding a parameterized
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pattern customized for the individual person of interest, the
parameterized pattern specifying a conventional pattern for a
good-fit (or custom-fit) garment for the individual person of
interest.

A computer-based method is also provided for identifying
the appropriate body-shape prototype guiding pattern for an
individual person’s (e.g., customer’s) set of measurements. In
one embodiment, the method comprises the step of computer-
analyzing a full set of body measurements wherein the step of
computer-analyzing comprises the steps of:
conducting a principle component analysis (PCA) of all mea-
surements in the set of body measurements;
obtaining principle component measurements from the PCA;
and
performing an unsupervised clustering algorithm on the most
significant principle components, thereby obtaining one or
more prototype body shapes.

The full set of body measurements (widths, breadths,
depths, arc measurements, circumferences, angles, and pro-
portions of these measures) can be obtained from a plurality
of people, wherein the plurality is representative of a popu-
lation of interest and wherein the full set of body measure-
ments from the plurality is representative of a spectrum of
body shapes and postures for which garments are to be
designed. Anindividual person’s measurements may be taken
by hand or by using computer analysis of a 3D body scan.

A computer-based method is also provided for producing a
conventional pattern from which a custom-fit garment can be
made for an individual person of interest (e.g., a customer). In
one embodiment, the method can comprise the steps of:
producing a parameterized pattern comprising determining
distance and angle parameters for an adaptable guiding pat-
tern from a set of measurements from the individual person,
and
producing a conventional pattern from the parameterized pat-
tern. The values of the customizable distance and angle
parameters can be matched to detailed dimensions of the
individual person, thereby yielding the parameterized pat-
tern. It will be apparent to the skilled artisan that the com-
puter-based method can be refined empirically by exploring a
range of size adjustments. Furthermore, the method can addi-
tionally comprise determining the good-fit outcome by
observing the garment on one or more models. In a specific
embodiment, one or more fit experts can be employed to
determine or judge the good-fit outcome.

Pattern parameterizations may be achieved using conven-
tional patternmaking standards known in the art to establish
the differences between patterns created for the different
shape groups (guided and augmented by the distance and
angle parameters generated in the initial step of identifying
body shape groups) or by the method disclosed herein for
identifying the appropriate body-shape prototype guiding
pattern for an individual person’s (e.g., customer’s) set of
measurements.

5.3 System and Method for Computer-Assisted Design of
Custom Fit Clothing

Systems and method for computer-assisted design of cus-
tom fit clothing are also provided. In one embodiment, the
system can comprise the following components:

(a) An adaptable “guiding pattern” that comprises a structural
form and a set of customizable distance parameters. The
values of the parameters can be matched to the shape (detailed
dimensions) of the customer so that the parameterized pattern
will specity a good-fit garment for that individual.

(b) A machine learning system that can predict a set of dis-
tance parameters for a guiding pattern given a set of measure-
ments taken from the customer; and
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(¢) A computer algorithm that can combine the specific
parameters for a customer with the structural form of'a guid-
ing pattern to produce a conventional pattern from which the
custom-fit garment can be made.

For each guiding pattern, a documented database can be
established comprising multiple tuples of distance parameter
values, associated distance parameters, and good-fit out-
comes. This database is used to train the machine learning
system.

According to this embodiment, customer measurements
may be taken by hand or by using computer analysis of a 3D
body scan. Pattern parameterizations may be conducted using
conventional commercial standards or by methods that are
optimized for a machine learning method (see Section 5.4
below). The documented database may contain instances of
both good and poor good-fit outcomes. The documented data-
base can be created by experimenting with a range of predic-
tions and involving a panel of experts to determine the good-
fit outcomes by observing the garments on a set of models.

A shape prototyping system is also provided for designing
a custom fit garment for an individual subject. In one embodi-
ment, the system can comprise:

(a) a data set of body-shape defining measurements (e.g.,
widths, breadths, depths, arc measurements, circumferences,
angles, and proportions of these measures) from a plurality of
people representative of a population of interest to character-
ize the spectrum of body shapes and postures for which the
custom fit garment is to be designed;

(b) a computer-based method for analysis of the measure-
ments, wherein the computer-based method determines one
or more prototype body shapes that identify or quantify a
spectrum of shapes and postures that represent the population
of interest;

(c) an adaptable guiding pattern for creating a parameterized
pattern, wherein the adaptable guiding pattern comprises a
structural form and a set of customizable distance and angle
parameters, and wherein parameter values are matched to
dimensions of the individual subject so that the parameterized
pattern will specify a good-fit garment for the individual
subject;

(d) computer-based method for creating a set of modified
guiding patterns from the adaptable guiding pattern wherein
each of the set of modified guiding patterns is matched to each
of the prototype body shapes identified in (b);

(e) a method for identifying the appropriate body-shape pro-
totype guiding pattern for the individual subject’s set of body
shape-defining measurements; and

() a method for producing a parameterized pattern from a
modified guiding pattern, comprising the step of establishing
the modifying guiding pattern distance and angle parameters
for the selected guiding pattern from the individual subject’s
set of body shape-defining measurements.

In one embodiment, the method of (f) can comprise a
method for producing a conventional pattern from which the
custom-fit garment can be made from the parameterized pat-
tern.

In another embodiment, the computer-based method of (b)
comprises conducting principle component (PC) analysis of
the body shape-defining measurements to derive principle
components (PCs) and conducting an unsupervised cluster-
ing algorithm on the PCs.

In another embodiment, the method of (f) is refined empiri-
cally by analyzing a range of size adjustments and/or using a
panel of experts to determine good-fit outcomes by observing
garment fit on a set of fit models.
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5.4 Automated Pattern Customization Using Three-Di-
mensional (3D) Body Scans and Machine Learning

Machine-learning systems and methods are also provided
for generating good-fit patterns from a foundation pattern
representation and a set of derived body measurements from
a 3D body scan. In one embodiment, the machine-learning
system can comprise a parametric model that encodes a tem-
plate pattern to a customizable parametric representation and
a learning system for predicting model parameters for a good
fit for a set of body measurements.

An effective parametric representation can be developed
for customization from a template pattern as described above.
A good-fit database can be established for training and vali-
dating a good-fit prediction machine learning system as
described above. The machine learning system is then trained
and evaluated for its ability to predict good-fit model param-
eters.

As is well known in the art, a starting point for any machine
learning method is a documented dataset containing multiple
instances of system inputs and correct outcomes. This data set
can be used, using methods known in the art, including but not
limited to standardized machine learning methods such as
parametric classification methods non-parametric methods,
decision tree learning, neural networks, methods combining
both inductive and analytic learning, and modeling
approaches such as regression models, to train the machine
learning system and to evaluate and optimize the performance
of' the trained system.

In one embodiment of the machine learning system, the
inputs can comprise a set of a subject’s body measurements.
The outcome (output) will be a pattern specification that is
known to be a good-fit corresponding to each subject’s body
measurements. The body measurements can be automatically
determined from a 3D body scan, which is also included in the
documented data set.

The template pattern sets the foundation for the customized
pattern. Although the initial template may be specified in a
number of different ways known in the art (for example, a
basic pattern that is re-sized or graded on an XY coordinate
measurement system with values derived from simple arc
and/or circumferential body measurements of the individual).
The initial template can be re-encoded into a parametric
model wherein the parameters specify the customization to a
subject’s measurements.

There are standard parameterizations known in the art that
are specified by garment manufacturers which reflect their
design practices. These may be employed to provide an initial
starting point from which new model parameterization may
be produced with the machine learning system.

The machine learning system can be configured for pre-
dicting good-fit pattern parameters. Preferred config-
uration(s) for predicting good-fit pattern parameters can be
developed through the testing of different input selections and
internal models. Such techniques for machine learning are
well known in the art. Different machine learning designs and
configurations can then be compared and evaluated for pre-
dicting good-fit pattern parameters.

System Organization

A flow diagram depicting the organization of one embodi-
ment of the machine-learning system is shown in FIG. 21.
The initial pattern is encoded into a standardized parametric
representation by a computer-based pattern analyzer.

In one embodiment, the pattern analyzer can identify the
parameters of the 2D pattern, how it will be joined to create a
3D garment, and initial relationships between the garment
and the body (i.e., a pants waist that corresponds with the
body waist). The pattern analyzer can also generate the para-
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metric representation of the pattern to be used by the pattern
generator. A computer algorithm may realize the pattern ana-
lyzer function if the guiding pattern is provided in a standard-
ized format or it may be accomplished manually ifthe guiding
pattern is provided in a format for which the system has not
been programmed to automatically accept.

In another embodiment, the pattern analyzer can perform a
check in the process to ensure that the pattern is adjusted
within parameters that will result in a useful pattern. The
pattern analyzer will identify the parameters of the 2D pat-
tern, how it will be joined to create a 3D garment, and initial
relationships between the garment and the body (e.g., a pants
waist that corresponds with the body waist).

This pattern representation, together with a set of good-fit
parameters, can be input to a computer-based pattern genera-
tor, which generates the customized pattern. Data inputs can
comprise data from a number of subjects with known good-fit
patterns and can be used to train the database initially.

The pattern generator combines the predicted good-fit
model parameters determined by the machine learning sys-
tem for the specific person and combines these with a simple
computer algorithm to the parametric representation of the
pattern to provide a compete pattern in a standardized format
from which the garment may be manufactured using conven-
tional methods.

The customization model is produced by running the pat-
tern analyzer, followed by inputting the pattern representa-
tion and the set of good-fit parameters, into the pattern gen-
erator. These processing components can be configured to
realize standard existing customization models and to explore
new models.

Using standard machine learning training end evaluation
methods, a learned pattern parameter prediction system can
be optimized to provide good-fit pattern parameters, given a
set of subject’s measurements. A number of suitable training
methods known in the art can be employed; these methods
can comprise the step of matching the systems predicted
patterns to the good-fit patterns stored in the database. Once
trained, the machine learning system can be used to create a
customized pattern from a subject’s measurements, as shown
in FIG. 21.

The quality of the output of the machine learning system
output depends on (a) the pattern parameterization, (b) the
learning machine design and (c) the quality of the training
database. These components can be refined and optimized
using methods known in the art.

For example, the database can be refined by adding
datasets for new documented subjects. The quality of the
database can be improved, for example by populating the
database with cases in which the customization was accom-
plished by one or more experts in garment customization.
Thus the database will better represent the expert’s knowl-
edge. In a preferred embodiment, the database includes data
for examples of poor fit designs, which can assist in the
evaluation of a trained system.

In one exemplary embodiment, the learned pattern predi-
cation system can be a nearest neighbor based learning sys-
tem. The Fit model database in that case would consist of
tuples containing sets of body measurement parameters for an
individual together with associated good-fit model param-
eters and a measure of the quality of fit of those parameters.
The value for the quality of fit can be determined by expert
opinion of the fit of a manufactured garment. This database
can be created (trained) by monitoring the process of conven-
tional manual custom fitting. That is, as a garment is custom
designed, the parameters of the first fitting can be entered with
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a low fit quality rating and subsequent improved fittings can
also be entered into the database with higher quality ratings.

Once the database is created a new person’s parameters is
matched to all customer measurements in the database and
the best fit parameters associated with the closest matching
database entry having the highest quality factor would deter-
mine the predicted good fit model parameters. Extensions to
such a learning system would avoid database values that have
provided low quality fits. Incremental learning can be facili-
tated by adding additional database entries for cases when the
system provides a poor outcome that is subsequently updated
by a manual custom fit. Machine learning methods beyond
nearest neighbor methods would typically be preferentially
used if they can be shown to provide a superior performance
for this task.

The machine learning system can be used for developing
and evaluating automated customization systems. It can be
used for characterizing different design models and for
accommodating different initial patterns. 3D body scans can
be used to input new body measurements that may aid in the
quality of'the fit of the customized pattern. One benefit of this
system is that once a sufficient number of good-fit models and
associated patterns have been acquired in the subject data-
base, no additional garment fabrication is necessary for the
system to be optimized and validated.

Computing Device(s) for Use in Connection with System
and Method

System and method for computer-assisted design of cus-
tom fit clothing are disclosed herein. One or more of the steps
and functions disclosed and contemplated herein can be
implemented on systems constituted by a plurality of devices
(e.g., host computer, interface, reader, and printer) or to a
single device. By way of example, and with reference to the
functional schematic drawing of FIG. 22, there is provided
one example of a computing device 900 for use in connection
with the systems and methods of the present disclosure. In
FIG. 22, reference block 900 designates personal computing
equipment such as an IBM personal computer (PC) or PC-
compatible computer, laptop, PDA, smartphone or other
device compatible with the concepts disclosed herein. Com-
puting equipment 900 includes a CPU 902 such as a proces-
sor, microprocessor or related device that executes stored
program instructions such as operator-selected applications
programs that are stored in ROM 904 or specialized functions
such as start-up programs which are stored in RAM 906.
Computing equipment 900 further includes a local area net-
work interface device 908, which provides access to a local
area network 910 whereby the computing equipment can
access files on a remote file server or send files for remote
printing or otherwise interact with a local area network in
accordance with known techniques such as by sending or
receiving electronic mail.

Computing equipment 900 can further include a monitor
912 for displaying graphic images and a keyboard/mouse 914
for allowing operator designation and inputting functions.
Neither of the monitor 912 or the keyboard/mouse 914 are
however necessary for implementations of the steps and func-
tions. Moreover, other examples of computing equipment
900 can include other mechanisms for interfacing with the
equipment 900, wherein such mechanisms can include touch-
screens, touchpads, and the like.

Mass storage memory 916 is connected for access by CPU
902. Mass storage memory 916 typically includes stored
program instruction sequences such as an instruction
sequence for performing one or more of the steps outlined
above, or other application programs such as word processing
application programs, optical character recognition pro-
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grams, spread sheet application programs, and other informa-
tion and data processing programs. Mass storage memory 916
can also store repositories including data, information and
reference tables for use in connection with concepts of
present disclosure, and other data as designated by the opera-
tor.

A modem 918 such as a wireless interface device, as well as
other peripheral devices 920 such as, but not limited to, a
facsimile interface and a voice telephone interface can be
provided so that CPU 902 can be part of a system 1000 and
can interface with external devices including local server
2000 and external server 3000 via network 2500. Thus, CPU
902 can send and receive data including sending via means
other than means 910.

The configuration of the system 1000 can be utilized to
process, execute, or implement (collectively, “process™) any
one or more of the steps and functions above. In one configu-
ration one or more of the local server 2000 and the remote
server 3000 is utilized to entirely process the steps in a man-
ner consistent with this disclosure. In one embodiment,
executable instructions related to one or more of the steps can
be located outside of the computing device so as to permit
data and information to be transferred from the computing
device to, e.g., the local server 2000 and/or remote server
3000, for immediate and/or further processing. In another
embodiment, processing steps and methodologies disclosed,
described, and contemplated herein can be distributed
throughout the system 1000 such as between and amongst the
computing device, the local server 2000, the remote server
3000, as well as the rest of the system, grid network, and/or
cloud computing network, with still other embodiments
being configured for the processing steps to be executed
entirely by the computing device. Having the processing
steps executed exclusively on the computing device can sig-
nificantly reduce bandwidth required by transferring text
rather than audio files. Moreover, this processing can reduce
delay from the moment the user chooses an audio version of
a Web site until the audio version is ready to use in the user’s
(mobile or stationary) computing device.

In view of the foregoing, aspects of the present disclosure
may be embodied as a system, method, or computer program
product. Accordingly, aspects of the present disclosure may
take the form of an entirely hardware embodiment, an entirely
software embodiment (including firmware, resident software,
micro-code, etc.) or an embodiment combining software and
hardware aspects that may in whole or in part be generally be
referred to herein as a “circuit,” “module” or “system,” and
“platform.” Furthermore, aspects of the present disclosure
may take the form of a computer program product embodied
in one or more computer readable medium(s) having com-
puter readable program code embodied thereon.

Any combination of one or more computer readable medi-
um(s) may be utilized. The computer readable medium may
be a computer readable signal medium or a computer read-
able storage medium. A computer readable storage medium
may be, for example, but not limited to, an electronic, mag-
netic, optical, electromagnetic, infrared, or semiconductor
system, apparatus, or device, or any suitable combination of
the foregoing. More specific examples (a non-exhaustive list)
of the computer readable storage medium would include the
following: an electrical connection having one or more wires,
a portable computer diskette, a hard disk, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), an optical fiber, a portable compact disc read-only
memory (CD-ROM), an optical storage device, a magnetic
storage device, or any suitable combination of the foregoing.
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In the context of this document, a computer readable storage
medium may be any tangible medium that can contain, or
store a program for use by or in connection with an instruction
execution system, apparatus, or device.

A computer readable signal medium may include a propa-
gated data signal with computer readable program code
embodied therein, for example, in baseband or as part of a
carrier wave. Such a propagated signal may take any of a
variety of forms, including, but not limited to, electro-mag-
netic, optical, or any suitable combination thereof. A com-
puter readable signal medium may be any computer readable
medium that is not a computer readable storage medium and
that can communicate, propagate, or transport a program for
use by or in connection with an instruction execution system,
apparatus, or device.

Program code embodied on a computer readable medium
may be transmitted using any appropriate medium, including
but not limited to wireless, wireline, optical fiber cable, RF,
etc., or any suitable combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present disclosure may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Objective C, C++ or the like and conventional procedural
programming languages, such as the “C” programming lan-
guage or similar programming languages. The programming
language can also be compiled or interpreted as recognized in
the art. The program code may execute entirely on the user’s
computer, partly on the user’s computer, as a stand-alone
software package, partly on the user’s computer and partly on
a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of net-
work, including a local area network (LAN) or a wide area
network (WAN), or the connection may be made to an exter-
nal computer (for example, through the Internet using an
Internet Service Provider). The computer code may likewise
be executed on a physical or virtual machine.

There is provided above some aspects of the present dis-
closure that are described with reference to flowchart illus-
trations and/or block diagrams of methods, apparatus (sys-
tems) and computer program products according to
embodiments made in accordance with the concepts and
implementations contemplated herein. Each block of the
flowchart illustrations and/or block diagrams, and combina-
tions of blocks in the flowchart illustrations and/or block
diagrams, can be implemented by computer program instruc-
tions. These computer program instructions may be provided
to a processor of a general purpose computer, special purpose
computer, or other programmable data processing apparatus
to produce a machine, such that the instructions, which
execute via the processor of the computer or other program-
mable data processing apparatus, create means for imple-
menting the functions/acts specified in the flowchart and/or
block diagram block or blocks.

These computer program instructions may also be stored in
a computer readable medium that can direct a computer, other
programmable data processing apparatus, or other devices to
function in a particular manner, such that the instructions
stored in the computer readable medium produce an article of
manufacture including instructions which implement the
function/act specified in the flowchart and/or block diagram
block or blocks.

The computer program instructions may also be loaded
onto a computing device, other programmable data process-
ing apparatus, or other devices to cause a series of operational
steps to be performed on the computer, other programmable
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apparatus or other devices to produce a computer imple-
mented process such that the instructions which execute on
the computer or other programmable apparatus provide pro-
cesses for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

The flowchart and block diagrams may illustrate the archi-
tecture, functionality, and operation of possible implementa-
tions of systems, methods and computer program products
according to various embodiments of the present disclosure.
In this regard, each block in the flowchart or block diagrams
may represent a module, segment, or portion of code, which
comprises one or more executable instructions for imple-
menting the specified logical function(s). It should also be
noted that, in some alternative implementations, the functions
noted in the block may occur out of the order noted in the
figure(s). For example, two blocks shown in succession may,
in fact, be executed substantially concurrently, or the blocks
may sometimes be executed in the reverse order, depending
upon the functionality involved. It will also be noted that each
block of the block diagrams and/or flowchart illustration, and
combinations of blocks in the block diagrams and/or flow-
chart illustration, can be implemented by special purpose
hardware-based systems that perform the specified functions
or acts, or combinations of special purpose hardware and
computer instructions.

In still other embodiments, the system 1000 is or may be
part of a cloud or adapted as a cloud computing network with
a network of interconnected nodes (e.g., computers, servers,
and the like). Cloud computing is a model of service delivery
for enabling convenient on-demand network access to a
shared pool of configurable computing resources (e.g., net-
works, network bandwidth, servers, processing, memory,
storage, applications, virtual machines, and services) that can
be rapidly provisioned and released with minimal manage-
ment effort or interaction with a provider of the service. This
cloud model can be characterized in a variety of ways. For
example, exemplary cloud computing networks may have:

On-demand self-service: a cloud consumer can unilaterally
provision computing capabilities, such as server time and
network storage, as needed automatically without requiring
human interaction with the service’s provider;

Broad network access: capabilities are available over a
network and accessed through standard mechanism that pro-
mote use by heterogeneous thin or thick client platforms (e.g.,
mobile phones, laptops, and PDAs);

Resource pooling: the provider’s computing resources are
pooled to serve multiple consumers using a multi-tenant
model, with different physical and virtual resources dynami-
cally assigned and reassigned according to demand. There is
a sense of location independence in that the consumer gener-
ally has no control or knowledge over the exact location of the
provided resources but may be able to specify location at a
higher level of abstraction (e.g., country, state, or datacenter);

Rapid elasticity: capabilities can be rapidly and elastically
provisioned, in some cases automatically, to quickly scale out
and rapidly released to quickly scale in. To the consumer, the
capabilities available for provisioning often appear to be
unlimited and can be purchased in any quantity at any time;
and

Measured service: cloud systems automatically control
and optimize resource use by leveraging a metering capability
at some level of abstraction appropriate to the type of service
(e.g., storage, processing, bandwidth, and active user
accounts). Resource usage can be monitored, controlled, and
reported providing transparency for both the provider and
consumer of the utilized service.
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One or more of the steps highlighted above, and contem-
plated herein, can likewise be executed by utilizing a proces-
sor such as the processor 902 (FIG. 22) above or other com-
puting device, network, etc.

The following examples are offered by way of illustration
and not by way of limitation.

6. EXAMPLES
6.1 Example 1
Lower Body Shape Analysis

This example demonstrates a method for lower body shape
categorization. In this example, principal component (PC)
analysis was selected to extract distinctive shapes from sil-
houette and profile views of the body. The example also
demonstrates that an improved system for automatic customi-
zation of patterns can be created if the process is started from
base patterns that are balanced and corrected for each cus-
tomer’s figure type.

To address problems found in previous PC studies, we
employed two strategies. The first strategy was to focus on
classifying only the lower body shapes rather than the whole
body shapes. Lower body shape analysis was selected for the
study disclosed in this example because: (a) customers are the
least satisfied with the fit of pants compared to all other
apparel items (Charoensiriwath, S., and Spichaikul, P., Con-
structing Thailand’s National Anthropometrics Database
Using 3d Body Scanning Technology, in ‘“Proceedings of
Pacific Neighborhood Consortium Conference”, Taipei, Tai-
wan, 2009 [accessed April 2010], http://www.pnclink.org/
pnc2009/chinese/ Abstract/08-Unfoldinge-Culture/08_Un-
foldingeCulture_Abstract_PiyawutSrichaikul.pdf;,  DOB-
Verband, Women’s outer garment size chart (1983)) and (b)
many of the made-to-measure apparel companies currently
provide pants as a custom garment style ([TC]?, Custom
Clothing, 2009 [accessed April 2010], http://www.tc2.com/
news/3 dbody.html). The second strategy was to include vari-
ous types of shape defining measurements such as width,
front/back depth, arc measurements and the drop values
between measurements of primary body locations instead of
simple circumference and length measurements.

Data for this analysis was derived from the SizeUSA data-
base ([TC]% 5651 Dillard Dr., Cary, N.C. 27518 USA), a
large representative database of measurements of U.S.
women. The Size USA sample was sorted to contain only
those women who would fit in the ASTM Missy size range.
This was done by retaining only women with BMI between
16.2 and 34.1 (90 percentile BMI). This was done for two
reasons; to eliminate body shapes that belong in a plus size
category, and to retain all waist and hip sizes in the Missy
category. The original SizeUSA data did not have width and
depth measurements except for the depth between abdomen
prominence point to buttocks point. However, 3D scans have
an advantage, that new measurements can be re-generated at
a later date, if 3D scans are kept.

Cluster analysis was conducted using the principal com-
ponent scores as independent variables to identify different
body shapes. Creating body shape categories is only the first
step. Previous studies which used these methodologies (PCA
and cluster analysis) did not progress past this stage. How-
ever, to create a system that can be effectively used for further
research, we also developed a simple and intuitive application
method for defining a new person’s body shape group. A
discriminant analysis was conducted and discriminant func-
tions consisting of the appropriate body measurements were
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developed. This system provides simple formulas for classi-
fication of an individual in a body shape group, making it
possible to compare their calculated function scores with the
range of function scores of each body shape group.

A reliable and objective categorization method was devel-
oped for lower body shapes of women aged 18 to 35, who are
within the 90” percentile (16.2 to 34.1) of body mass index
(BMI) scores (excluding more obese women), using principal
component analysis and cluster analysis. Discriminant func-
tions were created that classify lower body shapes identified
in objective 1, as a tool for classification of individuals to
body shape groups.

The rate of predictive accuracy of the discriminant func-
tions was determined in classifying body shapes by compar-
ing the original group membership identified from cluster
analysis with predicted group membership obtained from
discriminant functions.

Methodology

Measurement Selection

The dataset used for the study disclosed in this example
was measurements of women aged 18 to 35 from the Size-
USA dataset (McConville, J. T., “Anthropometry in Sizing
and Design”, Chapter VIII in Anthropometric Source Book,
Nasa Reference Publication 1024, Volume 1: Anthropometry
for Designers, National Aeronautics and Space Administra-
tion, Washington, D.C., USA (1978)).

Measurements that are related to lower body shape analysis
were selected on the basis of two considerations: (a) front/
back arcs, widths, and front/back depths should be included
for more specific categorization of both silhouette and profile
of'the lower body, unlike previous body shape analysis meth-
ods based on ratios or drops of girth measurements only, (b)
measurements should be useful for application to pants pat-
tern making. Width and depth measurements are difficult to
apply to a traditional pattern making method, but they provide
direct measures defining the silhouette and profile of the
body. Therefore, we utilized all of these measures; girths,
front/back arcs, widths, and depths for this study. Length
measurements (waist to hip height, waist to abdomen height,
and waist to crotch height) and length proportions (waist to
hip height/waist to crotch height, and waist to abdomen
height/waist to crotch height) were also considered in the
initial calculations.

There was only one depth measurement, the distance
between the abdomen prominence point and buttocks promi-
nence point in the SizeUSA data, which was calculated by
subtracting ‘Buttocks Back X’ from ‘Abdomen Front X’
(FIG. 1). However, this measurement by itself could not rep-
resent the degree of abdomen prominence and buttocks
prominence in relation to other body areas such as waist.

‘Front X°, and ‘Back X’ at the waist and hip level were
generated from the original SizeUSA scans by the Textile
Clothing Technology Corporation ([TC]?). The side seam
location was determined by a plane centered at the mid-point
between the abdomen prominence point and buttocks promi-
nence point. Front depth, back depth, and full depth were
calculated at the waist level and hip level. Waist widths and
hip widths were additionally provided by [TC]?. Girth, front
arc, and back arc at the waist level, top-hip level and hip level;
girth at the max-thigh level; and buttocks angle measurement
were selected from the original SizeUSA data (a total of 18
raw measurements). Other measurements including length
measurements were initially considered for inclusion in the
analysis. Length measurements were not used in the final
analysis. The discussion of testing and discarding length mea-
surements can be found in ‘Consideration of length variables’
of Results section.
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Table 1 (FIG. 7) presents the measurement procedures and
landmarks used to derive SizeUSA data from body scans for
the measurements used in the final analysis. A total of 14
drops and 1 angle were calculated: Drop values of girths (hip
to waist, top hip to waist, and hip to top hip {1-3}), drop
values of back arcs (hip to waist, top hip to waist, and hip to
top hip {4-6}), drop values of front arcs (hip to waist, top hip
to waist, and hip to top hip {7-9}), drop values of widths (hip
to waist {10}), drop values of depths (hip to waist {11}), drop
value of back depths (hip to waist {12}), and drop values of
front depths (abdomen to waist, and abdomen to hip {13-
14}), and buttocks angle {15} (see {numbers} listed in FIG.
2). The side seam location for the arc measurements were
different from that of the front/back depth measurements. Arc
measurements were defined automatically and constrained to
the definition used in SizeUSA. Even if we had an ‘optimal’
single definition of side seam placement, it would not affect
our results as differences are small among the different meth-
ods.

Since this study focused on body shape analysis regardless
of' body size, the strength of the relationship between weight
(a representative measurement related to body size) and 33
variables (18 raw measurements and 15 drops) was examined
by running bivariate correlation analysis using the statistical
package SPSS 17.0. If there was a weak linear relationship
between weight and a measurement, it was considered a
shape-related variable. Out of 18 raw measurements, the but-
tocks angle had only a low correlation value (r=0.088,
p<0.01). Most drops also had low correlation values (r=—
0.281 10 0.345, p<0.05), with the exception of the hip girth to
max-thigh girth drop (r=0.696, p<0.01). Bivariate correlation
analysis found that there were weak linear relationships
between weight and 15 variables (buttocks angle and 14
drops). Linear relationships such as a curvature relationships
not revealed in single correlation calculation could also pos-
sibly exist. Therefore, we conducted a regression analysis
with weight as a dependent variable, and a variable and its
square as independent variables. If r value was significantly
high (p<0.05), the function [weight=a+bx(variable)+cx(vari-
able)?] could be judged to be meaningful; expressed as cur-
vature relationships. R values did have significance, but when
r value in the linear model was compared with that in the
model which a quadratic term was added, the explanatory
power was not improved; r values were only increased by
about 0.02 to 0.10. Therefore, we could conclude that the 15
variables had both weak linear and curvature relationships to
weight. They could be considered as shape-related variables,
so they were included in the following analysis. Table 2 (FIG.
8) presents the descriptive statistics of the variables.

Sample Selection

There were 2,981 women aged 18 to 35 in the SizeUSA
data. Percentiles of BMI (Body Mass Index), waist girth
measurement, and hip girth measurement were calculated
(Table 3, FIG. 8). The Size USA sample was sorted to contain
only those women who would fit in the ASTM Missy size
range. Waist girth measurements and hip girth measurements
of'size 2 (the minimum size) and size 20 (the maximum size)
of the sizing standard ASTM 5585-95 (Standard of body
measurements for adult female misses figure type sizes 2-20)
were also compared with the girth measurements of SizeUSA
data. Both the waist girth (59.7 cm) and hip girth (86.4 cm) of
size 2 were positioned below the 5% percentile of SizeUSA
data. Both the waist girth (95.2 cm) and hip girth measure-
ments (121.9 cm) of size 20 were positioned between the 75th
and 90th percentile of SizeUSA data. The percentile of BMI
was compared with BMI categories provided by National
Heart Lung and Blood Institute (National Heart Lung and
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Blood Institute, BMI Categories, 2009 [accessed August,
2009], http://www.nhlbisupport.com/bmi/bmicalc.htm).
Body Mass Index (BMI) is a number calculated from a per-
son’s weight and height. BMI provides a reliable indicator of
body fat and is used to screen for weight categories. BMI
Categories: Underweight=<18.5, Normal weight=18.5-24.9,
Overweight=25-29.9, Obesity=BMI value of 30 or greater
(http://www.nhlbi.nih.gov/guidelines/obesity/index.htm).

The BMI value of 30 (classified as the ‘obese’ category)
was positioned between the 75th and 90th percentile of the
SizeUSA data. In consideration of the distributions of all
three values (BMI, waist girth, and hip girth), women (n=2,
682) within the range of the 16.2 (minimum) to 34.1 (the 90th
percentile of BMI) only were selected. This was done for two
reasons; to eliminate body shapes that belong in a plus size
category, and to retain all waist and hip sizes in the Missy
category. In addition, outliers (n=194), whose measurements
exceeded three times the standard deviation from the mean of
the measurement were removed. As the number of outliers
was less than 10% of the total sample, the final dataset (n=2,
488) was considered appropriate for the statistical analysis.

Body Classification Method

Statistical methods for body classification consisted of
principal component analysis and cluster analysis. Principal
component analysis is a mathematical procedure that trans-
forms a number of possibly correlated variables into a smaller
number of uncorrelated variables called principal compo-
nents. Two major rotation systems for extracting principal
components are available: Orthogonal and Oblique. The
assumption of Orthogonal system is that each measurement is
correlated to each component, but components are not corre-
lated each other. On the other hand, the assumption of
Oblique system is that each measurement is not correlated to
each component, but components are correlated each other.
For this study, Varimax rotation method, a representative
method of Orthogonal coordinate system, was selected since
it could provide independence among principal components.
The decision on the number of components to be retained was
made with consideration of three aspects: (a) eigenvalues that
correspond to the sum of the squared loadings for a principal
component, (b) rotated component loadings, and (¢) the num-
ber of variables that have high correlations with each compo-
nent (National Heart Lung and Blood Institute, BMI Catego-
ries, 2009 [accessed  August, 2009], http://
www.nhlbisupport.com/bmi/bmicalc.htm).

With respect to eigenvalues, principal components should
have eigenvalues greater than 1.0 (Kaiser-Guttman’s stan-
dard) (Warner, R. M., Applied Statistics: From Bivariate
through Multivariate Techniques, Sage Publications, Los
Angeles, USA (2008)) and they should also be large enough
to be distinguished from the rest of the principal components.
The next consideration was that each measurement should
have high component loadings (correlation) with one princi-
pal component. If a measurement was highly correlated with
more than two components, the analysis re-conducted with
this measurement removed. Regarding the third criteria, each
principal component should have a minimum of three vari-
ables in practice. If a component had less than three variables,
the component could not be retained since it did not have
enough indicator variables. However, for variables that were
important for patternmaking and that represented a distinctive
lower body shape, the z-score of the measurement was cal-
culated and used for cluster analysis as an independent vari-
able. A z-score indicates how many standard deviations an
element is from the mean. A z-score can be calculated from
the following formula [z=(X-p)/o] where z is the z-score, X
is the value of the element, p is the population mean, and o is
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the standard deviation (Korean Standard Association, KS K
0051:2009 Sizing systems for female adult’s garments
(2009)). z-score 1 was “drop of front abdomen depth to waist
front depth’ and z-score 2 was ‘drop of front abdomen depth
to front hip depth’.

Using each principal component that clearly represented a
distinctive shape from silhouette and profile views of the
lower body, K-means cluster analysis was conducted using
the principal component scores as independent variables to
categorize body shapes. After we assessed several options,
classifying the data into two to five clusters, the final number
of'the clusters was decided with the consideration of a similar
number of people in each cluster, significant differences
among clusters, and a reasonable number of clusters for fur-
ther study. To analyze whether clusters were significantly
different from one another, each body measurement was com-
pared through Duncan’s multiple range test of ANOVA post-
hoc analysis.

Prediction Method

Discriminant analysis was used to classify body shapes
identified from the cluster analysis. The dataset included
body shape group memberships coded by the cluster analysis
as a ‘grouping variable’, and the measurements correspond-
ing to principal components identified as ‘independent vari-
ables’. The discriminant analysis was performed by stepwise-
method, and key measurements were extracted that
discriminate among groups. Once the discriminant functions
were calculated, their significance and their percentage of the
variances were examined. To identify the rate of predictive
accuracy of the discriminant functions in classifying body
shapes, the original group membership identified from the
cluster analysis and the predicted group membership from
discriminant functions were compared. Means of function
scores and a scatter plot depicted by function scores were
presented to enable anyone to identify her body shape group.
Results

Pre-Principal Component Analysis

Principal component analysis (PCA) was conducted using
fourteen drops and a buttocks angle. The total amount of
variations in the sample was 15. Five principal components
(PCs) with eigenvalues greater than 1.0 were extracted (Pre-
PCAL1). Table 4 (FIG. 9) shows that 87.7% of the variation of
the fifteen variables was explained by 5 PCs. As presented in
Table 5 (FIG. 9), the first PC had high loadings with seven
drops: top hip girth to waist girth, front top hip arc to front
waist arc, back top hip arc to back waist arc, hip width to waist
width, hip girth to waist girth, front hip arc to front waist arc,
and back hip arc to back waist arc. The second PC had a high
correlation with five drops: hip girth to top hip girth, front hip
arc to front top hip arc, back hip arc to back top hip arc, hip to
waist girth, and front hip to waist arc. The third PC had a high
correlation with the buttocks angle and two drops: back hip
depth to back waist depth, and hip depth to waist back depth.
The last two PCs have only a single variable: PC4—drop of
front abdomen depth to front waist depth, and PC5—drop of
front abdomen depth to front hip depth.

Each variable should have high component loadings with a
single PC, but four of the drops (hip girth to waist girth, front
hip arc to front waist arc, back hip arc to back waist arc, and
back top hip arc to back waist arc) were highly correlated with
two PCs (Table 5, FIG. 9). As presented in Table 6 (FIG. 10),
after the removal of three drops (hip girth to waist girth, back
hip arc to back waist arc, and back top hip arc to back waist
arc) from the PCA, the five PCs with eigenvalues of 1.0 and
more (with 12 total variations in the sample) had variables
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with high loadings for only their PC (Pre-PCA2). Interpreta-
tion of the PCs was based on variables with high component
loadings.

Even though 5 PCs were extracted since their eigenvalues
were greater than 1.0, only the first three PCs (PC1, PC2, and
PC3) were found to make a strong contribution to variance
explained: PC1=25.5%, PC2=23.3%, PC3=19.6%. The con-
tribution of the next two PC values was much less:
PC4=10.5% and PC5=10.3%. In addition, each PC should
have minimum of three variables, but the last two PCs had a
single variable, which was not enough to provide adequate
information about that component.

Therefore, the first three PCs were only considered as true
PCs, and the last two PCs were removed from the final PCA.
However, since the variables from PC4 and PC5 were also
critical components that represent distinctive shapes from
silhouette and profile views of the lower body, these variables
were calculated as z-scores, and their z-scores were used in
the cluster analysis as independent variables (z-score 1: ‘drop
of front abdomen depth to waist front depth’, and z-score 2:
‘drop of front abdomen depth to front hip depth’).

Consideration of Length Variables

We also tested length measurements for inclusion in the
PCA, including ‘waist to hip height’, ‘waist to abdomen
height’ and ‘waist to crotch height’. All three length measure-
ments were collected under one PC, since they were highly
correlated with each other. Therefore, we concluded that
these measurements would not be useful for sorting into body
shape groups. This is the same reason that we excluded body
size-related measurements such as general girths, front arcs,
back arcs and inseam length.

We then tried a PCA that included length proportions:
‘waist to hip height/waist to crotch height’, and ‘waist to
abdomen height/waist to crotch height’. The results showed
that the first two variables were included in the ‘waist to hip
silhouette’ PC with relatively low loadings (0.620, 0.562).
Since no specific PC related to a specific vertical descriptor
was found, we used only horizontal measurements in the final
PCA.

Final Principal Component Analysis

Once all of the final variables were chosen, an additional
PCA was performed with the two variables corresponding to
PC4 and PCS5 removed. Analysis of the remaining variables
yielded 82.1% of the variations explained by three PCs with
eigenvalues 1.0 and greater (with 10 total variations in the
sample): PC1=30.7%, PC2=27.8% and PC3=23.6%. The
three PCs were considered as appropriate for the cluster
analysis since each PC had three or four variables which had
high loadings for only their PC, as shown in Table 7 (FIG. 10).
PC1 canbe interpreted as ‘waist to top hip silhouette’, PC2 as
“top hip to hip silhouette’, and PC3 as ‘buttocks prominence’.
As shown in FIG. 3, each PC can clearly represent a distinc-
tive shape from either the silhouette or profile view of the
body. These PC scores were saved in the dataset, and used for
the cluster analysis.

Cluster Analysis

K-means cluster analysis was performed using PC1 score,
PC2 score, PC3 score, and z-scores 1 and 2 as independent
variables to categorize lower body shapes. We experimented
with different numbers of clusters, dividing the 2, 488 women
into two, three, four and five clusters, and analyzed each set of
clusters. We concluded that three clusters were the most effi-
cient and appropriate to represent complex lower body shapes
for this study. The reasons are as follows:

When 2, 3, or 4 clusters were categorized, the data were
judged to be relatively evenly divided into each cluster as
follows; in 2-cluster model (cluster 1: n=1,186, 47.7%, clus-
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ter 2: n=1,302, 52.3%), in the 3-cluster model (cluster 1:
n=727, 29.2%, cluster 2: n=867, 34.9%, cluster 3: n=894,
35.9%), and in the 4-cluster model (cluster 1: 639, 25.7%,
cluster 2: 575, 23.1%, cluster 3: 721, 29.0%, cluster 4: 553,
22.2%), However, in the 5-cluster model, cluster 3 only rep-
resented 10% of the total data (cluster 1: 461, 18.5%, cluster
2: 646, 26.0%, cluster 3: 251, 10.1%, cluster 4: 531, 21.3%,
cluster 5: 599, 24.1%). Therefore we concluded that 5-cluster
model was not appropriate for lower body shape analysis for
this stage of our study.

In the 2-cluster model, cluster 1 had a straight front silhou-
ette, flat abdomen, and prominent buttocks, and cluster 2 had
a curvy front silhouette, prominent abdomen and flat but-
tocks. The *Straight’ shape in both front and side views, which
existed in the 3-cluster model, did not exist in the 2-cluster
model. We concluded that two clusters were not enough to
represent complex lower body shapes, and the 3-cluster
model was more appropriate to represent lower body shapes
than the 2-cluster model.

The 4-cluster model was also considered as a possible
choice for this study. However, in this model though cluster 1
and cluster 2 had obvious shape differences when compared
to the other two clusters, cluster 3 and 4 had shapes similar to
each other. Since this research was considered as an early
stage of these kinds of shape analysis studies using PCA and
cluster analysis, the 4-cluster model did not have much merit
when compared to the 3-cluster model. Therefore, we chose
three clusters as the final number.

In the 3-cluster model, a one-way ANOVA was conducted
based on 95% confidence level to compare the mean scores on
the five variables used in the cluster analysis. Table 8 (FIG.
11) shows that the overall F for the one-way ANOVA was
statistically different (p<0.05). As a post-hoc analysis, Dun-
can’s multiple range test showed that the means of all possible
pairwise comparisons on the five variables were significantly
different at the 0.05 level, except for the z-score of ‘drop of
front abdomen depth to waist front depth’ (z-score 1) between
group 2 and group 3. This means that each group is in a subset
by itself in four variables, but regarding the fifth variable, the
z-score 1, two subsets were identified as group 1 and group
2/3.

Table 8 (FIG. 11) also presents the means and standard
deviations of the PCs and z-scores of each body shape group
on five variables, ranked by a, b, and ¢, and ordered by the
magnitude of the mean value. Considering the waist to top hip
silhouette (PC1), group 1 is the curviest (0.967), while group
2 (-0.356) and 3 (~0.440) have rather straight silhouettes.
With respect to top hip to hip silhouette (PC2), group 1 has a
somewhat straight silhouette (0.008), group 2 is the straight-
est (<0.367), and group 3 has the curviest shape (0.349).
Regarding buttocks prominence (PC3), group 1 has some-
what flat buttocks (-0.151), group 2 has the most prominent
buttocks (0.730) with a large difference from the other two
groups, and group 3 has the flattest buttocks (-0.585). For the
abdomen prominence (z-score 1), group 1 has the most
prominent abdomen (0.894) with a large difference from the
other two groups, group 2 (-0.403) and 3 (-0.337). Regarding
the slope of the abdomen prominence point to the front point
at hip level (z-score 2), group 1 has a somewhat vertical
profile (=0.023), group 2 is the most sloped and tilted toward
the back (0.720), and group 3 has the most vertical profile
(-0.679).

Table 9 (FIGS. 12A-B) presents means and standard devia-
tions of each body shape group on 12 variables. The overall F
for the one-way ANOVA was statistically different on all
variables, and the means of most variables demonstrated the
same relationships as the means of their PCS. FIG. 4 shows
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how the means of each principal component and z-scores
compare among the three body shape groups.

To sum up characteristics of each body shape, group 1
(curvy shape) has the curviest silhouette between waist level
and top hip level, and the most prominent abdomen among the
three groups. The most notable characteristic of group 2 (hip
tilt shape) is that this group has the most prominent buttocks,
and their lower body is tilted toward the back. Group 2 also
has a rather straight silhouette between the waist level and top
hip level similar to group 3. However, group 2 has a fuller top
hip than group 3. Group 3 (straight shape) has a non-curvy
silhouette and non-prominent buttocks.

From the SizeUSA database of scans, we tried to identify
fit models for each of the three body shape groups, who have
median sizes of all five variables. However, it was impossible
to find perfect fit models, a normal outcome given the fallacy
of the average man (McConville, J. T., “Anthropometry in
Sizing and Design”, Chapter VIII in Anthropometric Source
Book, Nasa Reference Publication 1024, Volume 1: Anthro-
pometry for Designers, National Aecronautics and Space
Administration, Washington, D.C., USA (1978)). Therefore,
we identified some individuals that generally represent each
body shape group, and their 3D scans were provided from
[TC]?. To generate fit model examples (FIG. 5), we selected
3D scan files (.obj format) which could represent each body
shape. Then using the 3D tools in Photoshop CS4, we
manipulated and refined the 3D images to represent each
silhouette in the three directions (front/side/back) most effec-
tively. These silhouettes were adjusted to match the calcu-
lated average key measurements for each group. Front silhou-
ettes and profile sketches of each lower body shape group are
also shown in FIG. 5 for comparison.

The population distribution of each of the three body shape
groups was analyzed according to two age groups (Table 10,
FIG. 13). In women aged 18 to 25, group 3 (straight shape) is
the largest group (43.8%), group 2 (hip tilt shape) follows
with 35.9%, and group 1 (curvy shape) is least represented
with 20.3%. On the other hand, in women aged 25 to 35,
group 1 (curvy shape) was the largest group (39.9%), group 2
(hip tilt shape) follows with 22.6% and group 3 (straight
shape) with 26.5%. It is speculated that this is due to an
increase in abdomen prominence as the age increases.

Table 11 (FIG. 13) shows that there is also a difference in
lower body shapes according to ethnicity. Caucasians were
classified into the three body shape groups more evenly than
the other ethnicities. The Hispanic population was classified
primarily as either group 2 (hip tilt shape) (42.4%) or group 3
(straight shape) (40.3%); only 17.3% were identified as group
1 (curvy shape). Almost half of African American women
were classified into group 2 (hip tilt shape) (50.2%), and only
19.5% into group 1 (curvy shape). Others including Asians
were classified fairly evenly into body shape group 1 (38.4%),
group 2 (hip tilt shape) (33.4%), and group 3 (straight shape)
(28.2%). The results showed that African American and His-
panic people tend to have more prominent buttocks and a less
prominent abdomen than Caucasians and Asians.

Discriminant Analysis

The discriminant analysis was performed with three body
shape group memberships coded by the cluster analysis as a
grouping variable, and twelve variables used for the PCA and
the cluster analysis to develop a means to classify individuals
in the study shape groups. The discriminant analysis
extracted nine out of twelve variables as key measurements,
which discriminate three groups identified from the cluster
analysis. Three variables not represented included both the
front arc and back arc hip to top hip and back depth hip to
waist.
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Two discriminant functions (DFs) were found. The first
row in Table 12 (Wilks’ Lambda, FIG. 14), ‘1 through 2’
provides information about the statistical significance of the
entire model using DF 1 and DF 2 combined. Since a chi-
square statistic is %> (18)=4094.96, p<0.001, the overall
model, including both DF 1 and DF 2, significantly predicted
group membership. The second row of the table shows the
significance of DF 2 alone. Since a chi-square statistic is %>
(8)=1904.46, p<0.001, thus, the overall model with the only
DF 2 significantly predicted group membership. In Table 13
(FI1G. 14), additional information about the relative predictive
usefulness of DF 1 and DF 2 is presented. Here it can be seen
that 55.1% of the variance was predicted by DF 1, and 44.9%
of'the variance was predicted by DF 2. Thus, it is clear that the
entire model should combine both DF 1 and DF 2 to explain
100% of the variance. Table 14 (FIG. 14) reports the coeffi-
cients that were used to construct DFs, and shows the corre-
lation of each variable with each DF. The two DFs are as
follows:

DF1=(ax-0.143)+(bx-0.011)+(cx-0.386)+(dx—
0.197)+(ex—0.165)+(f%0.089)+(gx0.858)+(ix—
2.324)+(ix2.158)+(-2.493)

DF2=(ax0.357)+(bx—0.327)+(cx0.023}+(dx0.191)+
(ex—0.258)+(f%0.017)+(gx0.544)+(Fx1.522)+(ix
1.420)+(-5.740)

A new person’s group membership can be predicted by
calculating her DF1 score and DF2 score, and comparing
these scores with the scatterplot in FIG. 6. Group 1 tends to
have a positive DF1 score and a positive DF2 score. Group 2
has a negative DF1 score, but the DF2 score can be either
positive or negative. Group 3 can have either a positive or
negative DF1 score, but a negative DF2 score.

To identify the degree of predictive accuracy of the DFs in
classifying women to one of the three body shapes, the origi-
nal group memberships were identified from cluster analysis
and predicted group memberships were classified from the
DFs, and the two results were compared. Results can be seen
in Table 15 (FIG. 15); 97.5% of the women were classified in
the same body shape group by the two methods. It is consid-
ered that classification by calculation of the two DF's is accu-
rate enough to predict body shape groups.

Conclusions and Discussion

With 3D body scan technology, new types of measure-
ments such as width, front depth, back depth, front and back
arc measurements, and their drops could be derived for our
analysis. In our PCA we could prevent all horizontal mea-
surements and vertical measurements from collecting into
either PC1 or PC2 and obscuring the differences in body
shapes, which was a problem demonstrated by the past stud-
ies (Green, M. E., An application of U.S. Army Women’s
Anthropometric Data to the Derivation of Hypothetical Siz-
ing/tarrifing Systems, Clothing Res. J. 9, 16-32 (1981);
Salusso-Deonier, C. J., Delong, M. R., Martin, F. B., and
Kohn, K. R., A Multivariate Method of Classifying Body
Form Variation for Sizing Women’s Apparel, Clothing Tex-
tiles Res. J. 4(1), 38-45 (1985); Salusso, C. J., Borkowski, J.
J., Reich, N., and Goldsberry, E., An Alternative Approach to
Sizing Apparel for Women 55 and Older, Clothing Textiles
Res. J. 24(2), 96-111 (2006). using PCA and cluster analysis.
The three principal components and z-scores of two variables
(corresponding PC4 and PCS5 identified from the pre-PCA)
clearly represented distinctive shapes from silhouette and
profile views of the lower body. A representative system
identifying three lower body shape groups was developed,
and the three groups from the cluster analysis were shown to
be significantly different from one another on all components.
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In some embodiment, more than three clusters may be
preferred to fully represent complex body shapes. It is diffi-
cult to categorize the specific number of clusters since the
data are continuous, resulting in difficulty in dividing groups
into distinct clusters, an issue with any shape analysis system.
However, three clusters were the most efficient cluster num-
ber for our study when compared to two, four, or five clusters.
Here we present a method for body shape analysis. These
methods can be used to develop other body shape groups
using different body measurements or different numbers of
clusters. For example, we rejected the 5 cluster model
because cluster number 3 in this model represented a very
small percentage of the population.

Our body shape analysis method has different and
improved features that are more effective when compared to
prior known methods. While the method described by Con-
nell et. al (Connell, L. J., Ulrich, P. V., Brannon, E. L., Alex-
ander, M., and Presley, A. B., Body Shape Assessment Scale
Instrument Development for Analyzing Female Figures,
Clothing Textiles Res. J. 24(2), 80-95 (2006)) described body
shape in all dimensions, it relies on a visual analysis method
using nine scales for body shape assessment from front and
side views. The method we have developed is a more objec-
tive and reliable method using calculation from a measure-
ment database. Other popular categorization methods such as
that developed by Simmons, Istook, and Devarajan (Sim-
mons, K. P, Istook, C. L., and Devarajan, P., Female Figure
Identification Technique (FFIT) for Apparel, Part 1I: Devel-
opment of Shape Sorting Software, J. Fashion Mark. Manage.
4(1), 1-15 (2004)) based on ratios of body circumferences
have value. However, these can represent only general pro-
portions and is unable to differentiate shapes in all dimen-
sions (front and side views) completely. The method dis-
closed herein uses a variety of measurements and more
complex calculations that can describe front and side silhou-
ettes more completely at each body locations.

Previous studies that used PCA and cluster analysis did not
progress past the initial stage of identifying different groups.
However, to use these results, it is preferable to be able to
easily identify the body shape group of new study participants
who are not in the database used for analysis. Therefore, we
went one stage further to develop an application for determin-
ing a new person’s body shape group; a discriminant analysis.

Other methods can be used to define the body shape. For
example, it is possible to define cluster models which could
be used to score new subject’s measurements as having the
highest likelihood of belonging to an individual cluster. Spe-
cifically, from new measurements, their corresponding PC
scores derived through transposing the measurements with
the eigenvectors calculated from our training sample can be
defined, and then these scores can be classified as belonging
to one of the PC clusters where a PC cluster would have a
mean PC score with a known variability. The mean and varia-
tion would allow the new person to calculate a probability
score from the new PC scores for each cluster. The highest
probability would define the cluster the new subject belonged
to. However, we believe that one advantage of the discrimi-
nant analysis method disclosed herein is that it is more direct
and intuitive. Since our functions consist of two simple equa-
tions, the scores can be calculated simply without access to
the data used to identify PC clusters. Identifying an individu-
al’s place in the cluster is easier because it is a simple process
to compare the two scores with the bivariate scatterplot. Our
method can also show if a person is centered in the cluster, or
is close to a border between clusters.

The study described in this example was the first stage of a
project whose goal was to develop an improved automated

10

15

20

25

30

35

40

45

50

55

60

65

34

custom patternmaking system. Section 6.2, Example 2,
below, demonstrates the development of a block pants pattern
for each body shape group identified from this study and the
testing of a shape-driven customization system whose alter-
ations start from the appropriate block patterns.

The system can be tested to determine whether it produces
custom pants with better fit. In the existing automated made-
to-measure computer-aided design programs, girths (e.g.,
waist girth and hip girth) and lengths (e.g., inseam and waist
to crotch height) can be easily altered, however, pattern alter-
ations such as the center back seam angle (affected by but-
tocks angle), the center front seam angle (affected by abdo-
men prominence), the proportion of front to back panels and
side seam location (front and back depth proportions) are
difficult areas to adjust in the automated system. Different
block patterns based on body shape can solve the problem.
Therefore, for this shape analysis, we omitted size-related
variables such as girths and lengths because these measures
are linked to relatively simple alterations. We focused instead
on sorting into groups based on shape-related variables such
as drops of girths. However, in different embodiments, (e.g.,
creation of ready-to-wear sizing systems), different sets of
vertical and horizontal descriptors can be used for analysis.

Our results were derived for lower body measurements
only, and for a population of U.S. women of age 18 to 35
within the 90th percentile of BMI (34.14). The methods dis-
closed herein can be used to develop body shape categories
for the upper body, for larger women, for older women, and
for women of different ethnicities. The methods can also be
used to develop body shape categories for men. Successful
sizing systems and mass customization systems can be based
on complex variations in body shape and posture as well as
size. With the use of 3D body scan data and the methods
presented here for categorizing complex body shape mea-
sures reliably, these variations in the population can be
addressed and accommodated.

6.2. Example 2

Development of Automated Custom-Made Pants
Driven by Body Shape

Clothing fit is considered as a central element in clothing
quality and customer satisfaction in the apparel industry. The
right fit cannot be emphasized enough, and an appropriate fit
not only ensures that the garment will wear well, but it will be
worn often (Cotton Incorporated. (2002). Women uncover the
key to looking great. Retrieved Jun. 26, 2010, from http://
www.cottoninc.conm/Ismarticles/?article]D=97). However, in
a study of young women’s attitudes toward clothing fit almost
54% of the respondents reported being from only somewhat
satisfied to mostly unsatisfied with the fit of ready-to-wear
apparel (Alexander, M., Connell, L. J., & Presley, A. B.
(2005). Communications: Clothing fit preferences of young
female adult consumers. International Journal of Clothing
Science and Technology, 17(1), 52-64), and these figures are
consistent with survey results from Kurt Salmon Associates
(Kurt Salmon Associates. (2000, February). Which way to the
emerald city? Consumers search for the ideal shopping expe-
rience. Paper presented at the American Apparel and Foot-
wear Association Apparel Research Committee, Orlando,
Fla., USA): approximately 50% of women and 62% of men
cannot find good fit. Many studies concluded that substantial
problems exist in the fit of ready-to-wear apparel.

Mass customization and automated custom clothing have
recently been regarded as promising methods for the apparel
industry to create well-fitting clothing for consumers; 3D
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body scanners are useful tools in implementing these pro-
cesses. Brooks Brothers uses a 3D body scanner in their
Manbhattan retail store in New York to collect customers’
measurements to create customized suits and utilizes their
own custom patternmaking system to create an individual
pattern based on his body measurements (Haisley, T. (2002,
February). Brooks Brothers digital tailors measure up. Bob-
bin, 26-30). Lori Coulter produces custom-made swim suits
using their ‘“TrueMeasure’ process. Customers’ measure-
ments are taken from 3D body scanners in their store ([TC]>.
(2009). Custom clothing. Retrieved Apr. 4, 2010, from http://
www.tc2.com/news/3 dbody.html). Expert consultants ana-
lyze each customer’s body type, and provide the consumer
with suggestions about flattering swimsuit styles for her body
type. By providing fit that is individualized on the basis of the
customer’s objective body measurements, these companies
provide improved fit for their customers.

Online mass customization initiatives can also be successful
using self-reported measurements from the consumer. Arche-
type Solutions is a representative service provider for the
made-to-measure apparel industry, and brings mass customi-
zation to the apparel industry in USA (Archetype Solutions.
(n.d.). Refining apparel. Retrieved Aug. 26,2009, from http://
www.archetype-solutions.com). They have developed a
simple and intuitive ordering process that allows the con-
sumer to order a garment based on their body specifications
and style preferences in a few minutes through the web using
self-measurements. JCPenney, Lands’ End, QVC, and
indiDenim utilized Archetype technology for custom-made
women/men’s Chino pants or jeans, or men’s dress shirts. An
automated custom patternmaking process is used to create a
pattern specific to each individual, and then the garment is
made and shipped to the customer’s home. According to their
reports, around 40% of Lands’ End shoppers chose a custom-
ized garment over the standard-sized equivalent when it was
available. Reorder rates for Lands’ End custom-clothing cus-
tomers were 34% higher than for customers of its standard-
sized clothing (Schlosser, U. (2004, December 13). Cashing
in on the new world of me a handful of companies are finally
perfecting made-to-order for the masses. Here’s how. Fortune
Magazine, Dec. 13, 2004). However, in 2009 Lands’ End
decided to stop producing custom-made pants or jeans for
men and women while keeping men’s custom-made dress
shirts. Even though the reason of the closure of pants line was
not announced, the major reason may be the difficulty pro-
viding fit satisfaction for their customers since lower body
shapes are various and complex to identify, so the process of
development of individualized pants patterns is more difficult
than for shirts.

At the patternmaking level, there are several specialized
automated computer-aided design (CAD) programs for gen-
erating custom patterns (AccuMark Made-to-Measure of
Gerber Scientific, FitNet of Lectra Systems, Modulate of
Optitex, and made-to-measure of Assyst Bullmer). Methods
of altering patterns are slightly different depending on each
system, but they can be categorized in approximately two
ways. As the first method, the system needs to be set up with
a body size table, graded patterns, and alteration rules for
critical points on the patterns. The program selects the base
size pattern from the graded set by comparing primary body
measurements of the individual with the body size chart.
Then, measurement differences at identified critical fit loca-
tions are automatically calculated. The system automatically
applies specific changes to the chosen base pattern according
to alteration rules developed for the pattern based on the
measurement differences of the individual from the standard
body measurements for that pattern. Multiple successive
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alterations are made to the base pattern, and a final pattern is
generated that merges the full set of alterations. AccuMark
Made-to-Measure (MTM) of Gerber Scientific, FitNet of
Lectra Systems, and made-to-measure of Assyst Bullmer are
all systems that operate in this way.

The second method parametrically changes a base pattern
according to a set of defined dimensions. The system does not
require the development of a body size table and alteration
rules. Instead, it is necessary to define a set of dimensions for
a specific style. For example, a parametric jacket can be
defined using dimensions annotated as “Shoulder”, “Bust”,
“Waist”, and “Hips”. The system shapes the jacket to fit these
four dimensions. Each modification to the jacket can be visu-
alized interactively when changing names and values. Once
the parametric product is fully defined by a set of dimensions,
itis ready to generate custom patterns. Modulate of Optitex is
operated in this way. The two systems seem to be different,
but the underlying theory is the same. In the apparel industry,
more companies have used the first system than the second
one.

Current automated CAD programs cannot generate custom
clothing with perfect fit for each individual. Istook (Istook, C.
L. (2002). Enabling mass customization: Computer-driven
alteration methods. International Journal of Clothing Science
and Technology, 14(1), 61-76) noted that commercial CAD
systems are not only complicated, they also require a signifi-
cant level of knowledge and practical experience not easily
obtained. Apeagyei and Otieno (Apeagyei, P. R., & Otieno, R.
(2007). Usability of pattern customizing technology in the
achievement and testing of fit for mass customization. Journal
of Fashion Marketing and Management, 11(3), 349-365)
found that the software can manipulate standard type gar-
ments with basic features, but complicated styles such as
asymmetric designs is still problematic. Ashdown and Dunne
(Ashdown, S. P., & Dunne, L. (2006). A study of automated
custom fit: readiness of the technology for the apparel indus-
try. Clothing and Textiles Research Journal, 24(2), 121-136)
explored issues in setting up a custom apparel patternmaking
process using 3D body scanning and CAD software (FitNet of
Lectra System). After three iterative corrections of all ele-
ments such as the reliability of body measurement data, the
accuracy of body chart data, and the issue of fit preferences,
only seven of ten participants could be provided with good fit.
Except for these studies, there have been no studies about
methods of utilizing this commercial CAD software for cus-
tom patternmaking.

It has been demonstrated in previous studies that it is dif-
ficult to generate jackets with perfect fit even after several
corrections of all critical elements. When the hip girth was
determined as a primary measurement for initiating the cus-
tom fit process, the fit at the bust was poor although the fit at
the hip was appropriate, and when the bust girth was set as a
primary measurement, the fit at the bust was appropriate, but
the fit at the hip was not good. It was found that the system
cannot generate custom garments with good fit and keep the
original silhouette, if a person has a body size or body shape
that differs greatly from the original body chart and fit mod-
el’s body shape since this situation created the need for an
extreme pattern alteration in a specific area.

This example demonstrates that if alterations start from
differently shaped block patterns that are suitable for each
body type, the automated customization system can generate
custom clothing with improved fit.

The study described in this example tested whether
improved customization could occur if the process is started
from base patterns that are suitable for each customer’s figure
type and posture. A basic pants pattern for each body shape



US 9,251,591 B2

37

group was developed. The fit of pants created from an auto-
mated custom-made system using a single pattern (standard
customization method) was compared with the fit of pants
developed from an automated custom-made system using
multiple patterns driven by body shape (body shape driven
customization method).

There have been a few studies that analyzed the relation-
ships between lower body shape and patterns. However ear-
lier studies for pattern development based on body shape
were limited to classification of the degree of buttocks promi-
nence into two or three groups by visual judgment, or calcu-
lation of waist to hip proportion. As a foundation for this
study, in the example disclosed in Section 6.1, Example 1, we
developed a lower body shape categorization method by clus-
ter analysis using five component scores derived from prin-
cipal component analysis (PCA), so the development of block
patterns in this study was based on a much more objective,
data-driven, and detailed method.

Our method, disclosed above in Section 6.1, Example 1,
was developed based on 2,981 women aged 18 to 35 in
SizeUSA dataset, who are within the 90” percentile (16.2 to
34.1) of body mass index (BMI) scores (excluding more
obese women). Section 6.1, Example 1 focused on analysis of
body shape rather than body size since the automated made-
to-measure system can effectively alter the girth or length
measurements, but it cannot automatically adjust the center
back seam slope and the proportion of the front and back
pattern pieces, which are related to body shape. To identify
shape-related variable, the strength of the relationship
between weight (a representative measurement related to
body size) and 33 variables (18 raw measurements and 15
drops) related to lower body was examined by running bivari-
ate correlation analysis using the statistical package SPSS
17.0. If there was a weak linear relationship between weight
and a measurement, it was considered a shape-related vari-
able. A total of 15 drops and 1 angle were considered as
independent variables for the PCA: drop values of girths (hip
to waist, top hip to waist, and hip to top hip), drop values of
back arcs (hip to waist, top hip to waist, and hip to top hip),
drop values of front arcs (hip to waist, top hip to waist, and hip
to top hip), drop values of widths (hip to waist), drop values of
depths (hip to waist), drop value of back depths (hip to waist),
and drop values of front depths (abdomen to waist, and abdo-
men to hip) and buttocks angle.

From the PCA, as shown in FIG. 3, five principal compo-
nents (PCs) were identified to represent distinctive shapes
from the silhouette and profile views of the lower body: PC1:
body measurements that define waist to top hip silhouette,
PC2: body measurements that define top hip to hip silhouette,
PC3: body measurements that define buttocks prominence,
z-score 1: the drop of front abdomen depth to waist front
depth, and z-score 2: the drop of front abdomen depth to front
hip depth.

From cluster analysis using three PC scores and two
z-scores, three body shape groups which were statistically
different on all variables were found. Group 1 (curvy shape)
has the curviest silhouette between waist level and top hip
level, and the most prominent abdomen among the three
groups (n=727, 29.2%); group 2 (hip tilt shape) has the most
prominent buttocks, and their lower body is tilted toward the
back (n=867, 34.9%); group 3 (straight shape) has a non-
curvy silhouette and less prominent buttocks (n=894,35.9%).
FIG. 4 shows how the means of each variable compare among
the three body shape groups. Front silhouettes and profile
sketches of each lower body shape group are also shown in
FIG. 5 for comparison.
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This body shape analysis was the first stage in developing
an improved automated custom patternmaking system. We
developed a block pants pattern for each body shape group
identified by this study and tested a shape-driven customiza-
tion system whose alterations start from the appropriate block
patterns for each of the three body shape groups.

Methodology

Test Garment Style

The test garment style was a pair of pants with two front
darts, two back darts, and a straight silhouette from the abdo-
men and buttocks to hem. ‘Trouser’ described in Armstrong
(Armstrong, H. J. (2006). Patternmaking for Fashion Design.
New Jersey: Pearson Prentice Hall). The waist location was
determined at the position of the natural waist. This style was
chosen because of its ubiquity and potential for use as base
pattern for other styles. The pants were made from stable
medium weight cotton twill fabric in neutral color. The fabric
used had mean weight of 256 g/m2 (7.56 ounces/yard?) with
standard deviation of 4 g/m2 (0.12 ounces/yard?).

Use of an industry pattern was best for this study since the
industry has developed well-shaped block patterns that
embody much knowledge on good pants fit. We selected one
of the styles produced by a major direct marketing (catalog
and internet) retailer which has invested in the development
of'block patterns for their target market of women aged 18 to
35. The main criterion for selection of the style was fabric
property since this influences ease amounts. This item was
made from 100% cotton twill similar to the fabric used in this
study, so it was considered appropriate for this study. The
silhouette and design is slightly different from the test style,
but they could be easily altered. Due to regulation of the
retailer, patterns could not be officially provided. Instead, we
bought a size 10 (hip girth: 40 in) of this style from their
website. Then, the patterns were rubbed off, digitized using
AccuMark Pattern Design System 8.3 software of Gerber
Scientific, and altered them to the test garment style.

Recruitment for Selecting Fit Models (Stage 1: Develop-
ment of Base Block Patterns) and Fit Testers (Stage 2: Vali-
dation of the Use of the Basic Block Patterns)

For development of base block patterns for each body
shape group (stage 1), three to four participants needed to be
recruited for each body shape group as fit models. For vali-
dation of the use of the basic block patterns in a custom fit
process (stage 2), an additional ten participants for each body
shape group were desirable as fit testers. Fit models had to
have a hip girth measurement close to 101.6 cm (40 in), and
also represent their body shape group as a whole to develop a
pattern for each shape group in a base size. However, the fit
testers needed to be in a range of sizes to see the fit of custom
pants in various sizes. Therefore, the only requirement for the
fit testers was that their hip girth was less than 123.4 cm (48.6
in) measurement (90th percentile of the hip girth distribution
in SizeUSA). It was difficult to find fit models for stage 1
specifically, so participants were recruited for both stage 1
and 2 together. Then, fit models in appropriate size and shape
groups were selected after recruitment of all participants.

Female participants aged 18 to 35 were recruited in Janu-
ary 2010, and they were scanned twice in minimal clothing
(underwear and close fitting tank top/leggings) using a
VITUS/XXL 3D Body Scanner by Human Solutions. Crotch
height was manually measured since the scanner could not
reliably measure this area. Scan files were converted to rbd
format of NX16 Software version 6 from [TC]? and their
measurements were taken using the [TC]? automatic measur-
ing software, which was used to derive the SizeUSA data, to
detect the same landmarks and measuring locations. Principal
component analysis and cluster analysis (method developed
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in the foundation study disclosed in Section 6.1) was run
again to classify each participant’s body shape group and
identify their position within the body shape groups in five
variables (three PCs and two z-scores). We tried to recruit
women across the full range of body sizes as proportionally as
possible to test the custom fit process across the full range of
body sizes. The hip girth in ASTM D5585-95 was selected as
a key measurement for categorizing body size, and the num-
ber of participants in each shape group and their hip size was
tracked while recruiting. After a total of 83 participants
(group 1: n=26,31.3%, group 2: n=18, 21.7%, group 3: n=39,
47.0%) were recruited, we found enough appropriate fit mod-
els (3 fit modelsx3 groups) and fit testers (10 fit testersx3
groups) for each body shape group: size 2 (n=3, 3.6%), size 3
(n=2, 2.4%), size 4 (n=5, 6.0%), size 5 (n=1, 1.2%), size 6
(n=3, 3.6%), size 7 (n=5, 6.0%), size 8 (n=8, 9.6%), size 9
(n=2, 2.4%), size 10 (n=8, 9.6%), size 11 (n=1, 1.2%), size 12
(n=8, 9.6%), size 13 (n=2, 2.4%), size 14 (n=2, 2.4%), and
size 20 (n=1, 1.2%). Most of participants were willing to
continue with the study, but three participants needed for
stage 2 could not be reached. These three participants were
included in groups 1, 2 and 3 respectively, so we had 9 fit
testers in each body shape group.

Stage 1: Development of Base Block Patterns

An automated custom-made system was developed to gen-
erate custom patterns for the three fit models for each body
shape group in AccuMark MTM of Gerber Scientific to
reduce the number of fittings on fit models. Eight alteration
locations were set to the system: front waist girth, back waist
girth, hip girth, mid-thigh girth, knee girth, ankle girth, waist
to crotch length, and inseam length. A pair of custom-made
pants was sewn for each participant. We evaluated the fit of
the pants using a standard list of fit parameters described by
Leichty, Pottberg, and Rasband (Liechty, E. G., Pottberg, D.
N., & Rasband, J. A. (1992). Fitting and Pattern Alteration: A
Multi-Method Approach. New York: Fairchild Fashion and
Merchandising Group.), which represent the indicators of the
five basic components of fit: ease, line, grain, balance, and set
(Erwin, M., Kinchen, L., & Peters, K. (1979). Clothing for
Modems (6th ed.). Englewood Cliffs, N.J.: Prentice Hall). A
fit test was conducted with four postures (standing, sitting on
a chair, walking, and stepping) to analyze the fit in both the
standard position and in active positions. The pants were not
expected to fit well at this stage due to the difficulty of creat-
ing perfect fit from measurements only. Therefore it was
critical to mark via colored pens, pin in areas that needed to be
altered, and to take photographs and scans of each participant
wearing the pants to record the fit. After fitting the garments,
the needed alterations indicated during the fitting were trans-
ferred back to the patterns using Pattern Design System 8.3 of
Gerber Scientific. The patterns were then plotted again and a
new pair of custom pants was made. To get perfect patterns,
each fit model was asked to return for fittings at least three
iterations. Patterns were compared within each body shape
group and among body shape groups to identify and validate
differences.

The final fit model’s measurements including waist girth,
top hip girth, hip girth, thigh girth, knee girth, ankle girth,
waist to crotch length, inseam length, buttocks angle, and
abdomen depth were compared with the median values of
their body shape group. Fit models could never have perfect
median measurements of their body shape group. If their
body measurements and median values were not very differ-
ent, we did not alter the pattern since fittings were conducted
to perfect fit on the fit models. When the differences were
relatively large, patterns were altered to meet either the
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median values, or between the median value and the fit mod-
el’s measurement. In each case, we used our judgment to
decide the appropriate action.

Stage 2: Validation of the Use of the Basic Block Patterns
for Different Shape Groups in a Custom Fit Process

Using AccuMark MTM, we developed two automated cus-
tomization systems; standard customization method which
alterations started from a single pattern (industry pattern), and
body shape driven customization method which alterations
started from one of the three different block patterns devel-
oped in stage 1 for each body shape group. The general
process of developing made-to-measure systems is as fol-
lows:

(1) The base patterns (size 12) for each body shape group
were graded (size 2 to 20) in Pattern Design System 8.3,
according to a grading method from a grading class provided
by Gerber Scientific in New York. This method is the most
common grading method which is used in the New York
apparel industry.

(2) In Pattern Design System 8.3, alteration points corre-
sponding to the five locations (waist girth, hip girth, thigh
girth, waist to crotch length, and inseam length) which were
identified as the alteration needed were numbered. Alteration
rules were set up in the alteration rule file in AccuMark
Explore.

(3) Three body charts (one for each body shape group)
were made. The most representative fit models’ measure-
ments were used for the size 12, and the size intervals from
ASTM D 5585-95 were used to develop the chart. The charts
were saved in AccuMark MTM.

(4) Hip girth was selected as a primary measurement for
selection of each participant’s base size. Rules (the hip girth
range of each size) were saved in AccuMark MTM.

When generating custom-made patterns, the system first
selected a base size pattern of the individual by comparing her
primary body measurement with that in the body chart. After
selecting the base size pattern from the graded nest (standard
customization method: an industry pattern, body shape driven
customization method: one of the three block patterns), the
system compared the rest of her measurements with those in
the body chart, and calculated the alteration amounts at each
location. Each alteration was made according to the alteration
rules. All of the alterations were combined, and the final
custom pants patterns were generated.

Twenty seven participants (9 fit testersxshape group) tried
on two pairs of pants, and judged the fit in four postures
(standing, sitting on a chair, walking, and stepping) in the two
sets of pants. Four photographs (front, side, and back view of
the standard posture, and side view of the sitting posture)
were taken for expert judges’ visual fit evaluation. They then
filled out a questionnaire regarding fit of the pants at 12 body
locations; waist ease, abdomen ease, hip ease, thigh ease,
knee ease, crotch ease, front waist placement, back waist
placement, crotch placement, hip placement, side seam
placement, and inseam length [wearers’ fit evaluation]. A
five-point scale was used for this study. The end points of each
scale varied depending on the fit location, for example very
tight (1)—very loose (5) or very short (1)—very long (5). The
middle value of the scale, 3, represented good fit. The partici-
pants rated overall fit satisfaction on a five-point Likert scale,
ranging from 1 (very dissatisfied) to 5 (very satisfied). They
repeated this process with the second pair of custom pants. To
prevent bias introduced from the order of donning pants, we
alternatively provided the two pairs of pants. At the end, each
participant was asked to choose which of the two pair of pants
fitted them best.
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Three expert fit judges working in the women’s apparel
industry performed visual analysis of the fit of the pants as
well [expert fit judges’ visual fit evaluation]. Each fit judge
had worked as a designer or technical designer in the wom-
en’s woven apparel industry for eight years or more. Each
judge was provided with 27 questionnaires for 27 sets of pants
for each set of test pants (A—made by body shape driven
alteration method, B—made by standard alteration method)
for fit analysis. The fit of the pants was judged from photo-
graphs taken during the wearers’ fit test. They analyzed front
waist ease, abdomen ease, front thigh ease, front crotch ease,
crotch length, inseam length, back waist ease, back hip ease,
back thigh ease, back crotch ease, front waist placement, back
waist placement, side seam placement, and overall fit. The
scaling method was the same as the wearers’ fit evaluation. At
the end of the questionnaire, judges chose their best fitting
pair overall.

Analysis Method for Comparison of Two Made-to-Mea-
sure Systems

To judge which type of pants provided better fit in each
body area, the scale 3 was re-coded as ‘1 (good fit)’, and the
restofscales (1,2, 4, and 5; e.g., very tight (1), tight (2), loose
(4), very loose (5) at waist ease] as ‘0 (poor fit)’. A generalized
estimating equation (GEE) was performed to test whether the
body shape driven customization method (pants type A) can
generate custom-made pants with better fit than the standard
customization method (pants type B) using SPSS 17.0. This
analysis assessed 12 locations for the two main effects (pants
type and shape group) and one two-way interaction (pants
typexshape group) at 95% confidence level. If no significant
interaction was found, GEE was re-performed with only the
two main effects. F-values and means for each location were
examined. In locations where both a ‘pants type’ main effect,
and a ‘pants typexshape group’ interaction were found,
means of type A and B were compared in each shape groups
using pairwise comparison analysis at 95% confidence level.
Then, we returned to the data coded by a five-point scale, and
cross-tabulations of frequencies of fit scores were calculated
to identify which fit problems each pants type had depending
on body shape group.

Regarding analysis of overall fit satisfaction judged by a
five-point scale, ranging from 1 (very dissatisfied) to 5 (very
satisfied) [continuous variable], linear mixed models (LMM)
was utilized instead of GEE. For the last question in which
wearers chose the best fitting pair, frequencies were calcu-
lated.

For analyzing the results of the expert fit judges’ fit analy-
sis, ‘judge’ variable should also be considered. Therefore a
main effect (judge) and two two-way interactions (pants
typexjudge, and shape groupxjudge) were additionally as
independent variables, the process was the same as the wear-
ers’ fit analysis.

General methods for fit judging are well known in the art,
see, e.g., Ashdown, S. P. et al (2004), J. Textile & Apparel,
Technology Management 4(1):1-2; Ashdown, S. P. &
O’Connell, E. K. (2006), Clothing Textiles Res. J. 24(2):137-
148; Bye, E. et al. 2005, J. Textile & Apparel, Technology
Management 4(3):1-5; Erwin, M. et al. 1979, Clothing for
Moderns, 6” ed., Englewood Cliffs, N.J.: Prentice Hall;
McConville, J. T. Anthropometric fit testing and evaluation.
InR. L. Barker et al. Eds, Performance of Protective Clothing
ASTM STP900 (pp. 556-568); Philadelphia, Pa., American
Society for Testing and Materials; and Speer, J. K. 2008,
Victoria’s Secret: Framing the fit problem. Retrieved August
2009 from Apparel Magazine: http://www.apparelmag.com.
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Results

Fit Models Selected for the Block Patternmaking

A description of the method for selecting three fit models
for group 1 is set forth below as one example. The process of
selection of fit models for group 2 and 3 is depicted graphi-
cally in the fit models” pentagonal graphs in FIG. 16B. The
pentagonal graphs of 10 best fit model candidates (based on
their measurements) among 26 participants from group 1 are
shown in FIG. 16A. It was impossible to find perfect fit
models that had median values of the group 1 in all five
variables. The main criteria of selection of fit models were
PC3 (buttocks prominence), z-score 1 (abdomen promi-
nence) and z-score 2 (slope from abdomen point to front hip
point). The three variables were related to abdomen and hip
shape which were critical elements to develop center front
seam slope, center back seam slope and crotch extension of
the block patterns. These locations in patterns are difficult to
develop from measurements alone, so fittings on live fit mod-
els with median values of these three variables are preferred.
On the other hand, PC1 (waist to hip silhouette) and PC2 (top
hip to hip silhouette) were related to girth measurements,
which could be relatively easily applied for pattern making.
Regarding PC3 (buttocks prominence), the scores of partici-
pants #26, #32, #41, #42, and #50 were located far away from
the median values of group 1, so they were removed from the
candidate list. #11 had almost median values in all three
critical variables: PC3, z-score 1, and z-score 2. She had a
slightly smaller top hip girth than the median value, resulting
in a smaller PC1 (waist to hip silhouette) score and a larger
PC2 (top hip to hip silhouette) score. Increasing top hip girth
in her pattern was relatively easy, so she became a fit model
for group 1. #52 had also median values in four variables:
PC1,PC3, z-score 1 and z-score 2, while PC2 score was larger
than the median value, which means hip width is wider than
the median value. This person was also determined as a fit
model. The last fit model was selected between participant
#20 and #46. For the values of PC1, PC2 and z-score 1,
neither #20 nor #46 had scores which were very close to the
median values by similar amounts. But #20 had almost
median values in PC3 (buttocks prominence) and z-score 2
(slope from abdomen point to front hip point), while #46 had
median value in only PC3 (buttocks prominence). Therefore
#20 was selected as the last fit model.

Stage 1: Development of Final Block Patterns

In FIG. 17, the three final block patterns (used for shape
driven customization system) and the industry pattern (used
for standard customization system) are superimposed for
comparison. The most obvious difference in patterns is the
center back seam slope. The buttocks of group 2 were the
most prominent (25.8°), group 1 and 3 had a medium degree
of prominence (21.3° and 20.6°), and the fit model for the
industry pattern had the flattest buttocks (15.5°). Accordingly,
the center back seam slope of group 2 was the most tilted and
that of the industry pattern was the most vertical. Another
difference among patterns was the center front seam slope.
The difference in center front seam slope was influenced by
the drop of front abdomen depth to front hip depth. Group 2
had the largest drop (the posture is tilted toward the back), so
the center front seam slope is the most tilted. The third dif-
ference was the silhouette of the side seams. Group 3 had a
straight shape while group 1 had a curvy waist to hip shape
and a prominent abdomen, and group 2 had prominent but-
tocks. Therefore, group 3 has straighter side seams from waist
to hip level than the other groups. Group 1 has curvier side
seams from waist to top hip level than the others. Regarding
the proportion of front pattern to back pattern at waist level,
group 1 proportion is 1:0.97, group is 2 1:1.08, and group 3 is
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1:1.02. The front pattern piece of group 1 has a larger propor-
tion compared to the back, while the others have smaller front
patterns compared to the back. The proportion of the front
pattern piece to the back pattern piece at the hip level is
similar for all three groups (1:1.06=front:back). The side
seam of the industry pattern is located further toward the front
than the other three group patterns (a smaller front pattern
piece and larger back piece with proportions of 1:1.30 at waist
level and 1:1.21 at hip level).

It was difficult to analyze crotch length in relation to body
shape and size, since max-thigh girth, hip depth and abdomen
depth were inter-related and influenced the pattern shapes
simultaneously. One of the reasons that group 2 has the long-
est crotch extension was because the fit model of group 2 has
the largest thigh girth. Another possible contributing factor is
that group 2 has the most prominent buttocks, so this depth
influenced the amount of the crotch extension. Group 1 and 2
have a similar thigh girth (24.05 and 24.00 in), so the amounts
of'their crotch extensions are similar. The proportion of front
to back crotch extension was not quantified in relation to body
shape differences.

Stage 2: Comparison of Fit of the Pants Made by the Body
Shape Driven Customization System (Type A) and the Stan-
dard Customization System (Type B)

Expert Fit Judges’ Evaluation

Regarding the best fitting pair overall, 70.4% (n=57) of the
judges’ ratings (a total of 81=3 judgesx27 participants’ pants)
ranked pants type A (shape driven customization system) the
highest, and 24.7% (n=20) ranked pants type B (standard
customization system) the highest. In 4.9% (n=4) of the cases
that the judges were not able to choose between pants type A
and B indicating that in these cases they were the same overall
fit. Linear mixed models (LMM) was utilized to identify the
overall fit [1 (very bad), 2 (bad), 3 (neutral), 4 (good), and 5
(very good)] for the three main effects (pants type, shape
group, and judge) and three two-way interactions (pants
typexshape group, pants typexjudge, and shape groupx
judge) (Table 16, FIG. 19). There was no significant interac-
tion in this model. There were significant main effects of
‘pants type’ [F (1, 124)=24.09, p<0.05], and ‘judge’ [F (2,
124)=3.26, p<0.05] on overall fit scores. Pants type A
(Mean=3.61, SE=0.11) had significantly higher overall fit
scores than pants type B (Mean=3.03, SE=0.11). Judges had
different levels of rating on overall fit, but there was no
problem on interpreting the results of the ‘pants type’ effect
since there was no interaction between judges and the other
two main effects.

To compare which type of pants provided better fit in each
body area, a generalized estimating equation (GEE) was used
to analyze the fit [0 (bad), 1 (good)] at 13 locations for the
three main effects (pants type, body group, and judge) and
three two-way interactions (pants typexbody shape group,
pants typexjudge, body shape groupxjudge) (Table 17, FIG.
19). There was a significant main effect of pants type on front
waist ease (Mean: A=0.90, B=0.59), back waist ecase
(A=0.83, B=0.37), front waist placement (A=0.79, B=0.60),
back waist placement (A=0.88, B=0.69), crotch length
(A=0.85,B=0.16) and side seam (A=0.85, B=0.16) (p<0.05).
In all six locations, type A ratings were significantly higher
than type B. Especially in the areas of side seam placement,
back waist ease, and front waist ease, type A was rated higher
than B. In all six locations, there was no type by group
interaction, which means that type A was ranked higher than
type B in all groups. Regarding the type by judge interactions,
an interaction was found only at the front waist placement. It
means that in the rest of the locations, all judges ranked type
A higher than type B. At front waist placement, it was neces-
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sary to examine pairwise comparison of means of type
depending on judges since there was a significant type by
judge interaction. Two judges rated type A higher than B
(Mean A-B: judge 2=0.27, judge 3=0.18, p<0.05), but one
judge rated type A lower than B (A-B=-0.13).

At abdomen ease, buttocks ease, front crotch ease, and
front thigh ease, type A was judged to have tendencies toward
better fit even though the differences of the two types were not
significantly different. At back crotch ease, thigh ease, and
inseam length, type B had atendency to exhibit equal or better
fit, but the fit variables were not significantly different and the
fit differences were not large.

To analyze which type of pants provided better fit depend-
ing on body shape groups, paired t-test was conducted after
splitting the data by shape groups (Table 18, FIG. 20). At front
waist ease, type A significantly provided better fit in group 1
and 2 (Mean A-B: group 1=0.44, and group 2=0.37) (p<0.05).
According to frequencies of fit scores, type A provided good
fit for 92.6% of group 1, 88.9% of group 2, while type B
provided good fit for 48.1% of group 1, and 51.9% of group 2.
Type B had tight fit problems for 51.8% of group 1 and 44.4%
of group 2 (FIG. 18). At back waist ease, type A provided
better fit in all three groups with significant differences (A-B:
group 1=0.37, group 2=0.52, and group 3=0.41) (p<0.05).
Type A provided good fit for 74.1% of group 1, 81.5% of
group 2, and 88.9% of group 3, while type B provided good fit
for 37.0% of group 1, 29.6% of group 2, and 48.1% of group
3. Type B had tight fit for 29.6% and loose fit problems for
33.3% of group 1, loose fit problems for 48.1% of group 2,
and loose fit for 37.2% of group 3.

At front waist placement, type A provided significantly
better fit than B in group 3 (A-B=0.26, p<0.05). Type A
provided good fit for 77.8% of group 3, while type B provided
good fit for 51.9% and low placement for 37.0%. At back
waist placement, type A provided significantly better fit for
group 2 (A-B=0.33) and 3 and (0.22) (p<0.05). In group 2,
type A provided good fit for 96.3% while type B for 63.0%. In
group 3, type A provided good fit for 77.8% while type B for
55.6%. In group 2 and 3, high back waist placement was
found for 29.6%. At crotch length, type A provided signifi-
cantly better fit for group 1 (A-B=0.41, p<0.05). Type A of
group 1 had a high frequency of good fit (55.6%), but type B
had long crotch lengths for 74.1%. At side seam location, type
A provided significantly better fit for all groups with large
differences (A-B: group 1=0.56, group 2=0.59, group
3=0.78) (p<0.05). Type A provided good fit for 77.8% of
group 1, 81.5% of group 2, and 88.9% of group 3. On the other
hand, type B provided forward side seam location for 55.5%
of group 1, 62.9% of group 2, and 66.6% of group 3.

For the rest of the fit locations, positive or negative direc-
tions could show which type had a tendency toward slightly
better fit in Table 18 (FIG. 20), but the differences were small
and there were not significant differences between the two
types.

Wearers’ Fit Evaluation

About the best fitting pair overall, for all groups 59.3%
(n=16) out of 27 wearers selected type A, and 40.7% (n=11)
for type B. In group 1 and 3, 66.7% (n=6) of wearers chose
type A, and 33.3% (n=3) selected type B. However, in group
2 results were more evenly divided, as 44.4% (n=4) of wear-
ers chose type A and 55.6% (n=5) selected type B. Linear
mixed models (LMM) showed that overall fit satisfaction was
not significantly different between the two types (Mean:
A=3.44,B=3.43).

To compare which type of pants provided better fit in each
body area, a generalized estimating equation (GEE) was used
to analyze the fit [0 (bad), 1 (good)] at 12 locations for the two
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main effects (pants type and shape group) and one two-way
interaction (pants typexshape group). There were significant
main effects of pants type on waist ease (Mean: A=0.75,
B=0.44) and abdomen ease (A=0.85, B=0.56) (p<0.05). In
both waist and abdomen, type A provided significantly better
perceived fit than type B, and there was no type by group
interaction, which means that type A was ranked higher than
type B in all groups. At waist, type A provided good perceived
fit for 77.8% of group 1, 77.8% of group 2, and 66.7% of
group 3. Type B had tight perceived fit problems for 44.4% of
group 1, tight perceived fit for 33.3% and loose perceived fit
for 22.2% of group 2, and loose perceived fit for 55.5% of
group 3. At abdomen, type A generally provided good per-
ceived fit for 77.8 to 88.9% of the groups as well. Type B
provided tight perceived fit for 44.4% of group 1, tight per-
ceived fit for 22.2% and loose perceived fit for 22.2% of group
2, and loose perceived fit for 22.2% of group 3. These two
locations were close each other, so these fit problems were
generated in the same general area within the pattern.

Conclusion and Discussion

The development of block patterns for this example was
based on detailed body shape analysis and objective group-
ing, and used more sophisticated patternmaking and fitting
procedures to arrive at an appropriate pattern shape. This
example demonstrates a new method for selecting fit models
and developing pattern blocks. Block patterns were devel-
oped by fitting pants on multiple fit models, so that block
patterns had more reliability and validity than those that are
developed by fitting to a single model. When fit models are
selected, their body sizes (e.g., waist girth and hip girth) are
usually considered, but in this example, fit models were
selected with consideration of body shape as well. Eighty
three participants’ five variable scores were compared with
the median size model’s scores of their body shape group
using pentagonal graphs. Each individual’s placement of five
variables was compared within the group and among the
groups, and the most representative three fit models were
selected.

This example demonstrates a shape-driven customization
system whose alterations start from appropriate block pat-
terns. Pants from an automated custom-made system using
multiple patterns driven by body shape (type A: body shape
driven customization method) are judged to have better fit
than pants created from an automated custom-made system
using a single pattern (type B: standard customization
method). The results of experts’ fit evaluation showed that
type A provided significantly better fit at waist ease, waist
placement, crotch length, and side seam placement (p<0.05).
Wearers’ fit analysis showed that type A was judged to have
better fit at waist and abdomen with significant differences
(p<0.05). At the rest of locations, the fit of two types were not
significantly different.

At the waist and abdomen, type A provided good fit for
most of the wearers, and definitely provided better fit than
type B. At the hip, type A had good or relatively loose fit.
However, type B had tight fit problems at the front waist,
loose fit problems at the back waist, and tight fit problems at
the back hip overall (FIG. 17). These fit problems caused tight
fit problems at the back crotch. The fit problems of type B
were caused by the center back seam slope and side seam
placement in block patterns, which were not balanced for
each participant’s body shape. While the alteration process of
type B started from a single block pattern regardless of body
shapes, type A was made on the basis of block patterns of their
selected group that are balanced and corrected for each par-
ticipant’s figure type and posture. The made-to-measure sys-
tem could effectively alter the girth measurements, but it
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could not automatically adjust the center back seam slope and
the proportion of the front and back pattern pieces from the
block patterns. Therefore in type B, even though the waist
girth and hip girth were adjusted to meet each participant’s
size, the front waist was tight and back waist was loose since
the center back seam angle in their block patterns was too
vertical for their back waist to buttocks shapes, and the side
seam location was too forward for their front to back propor-
tions.

This example tests a shape-driven customization system
whose alterations start from appropriate block patterns. This
example demonstrates that the automated system disclosed
herein, which uses different block patterns shaped for differ-
ent body shapes, can be used for custom pattern generation.
The results of this study show that the above-described sys-
tem incorporating body shape information into block patterns
can generate custom patterns with better fit.

Appropriate block patterns were found to improve fit of
custom pants generated by automated made-to-measure CAD
software. However, a well-shaped block pattern is just one
element that can be used in setting up the system. Other
elements can also be included, such as a body size chart that
reflects the target market, graded patterns that are used for
alteration, appropriate alteration rules, accommodation of an
individual’s fit preference to the system, and methods for
acquiring accurate measurements that are matched to those in
a body chart.

Among these elements, appropriate alteration rules can
determined as follows. Alteration rules can be made simple to
reduce the influence of alteration rules on the system and to
judge influences of block patterns on the system. Alteration
rules can be set up, for example, only at primary locations
such as waist girth, hip girth, thigh girth, waist to crotch
length, and inseam length. However if multi-dimensional and
specified alterations are set up in the system, they can help
with improving fit of custom clothing generated by the sys-
tem.

Commercial systems are currently available that use body
measurements to generate custom fit patterns by applying
automated alterations to a graded pattern. However, various
elements such as body charts, block patterns, grading, and
garment charts need to be correctly set up in the system, so the
preparatory activities are laborious. Limited alterations are
conducted because the system selects a pattern from a previ-
ously graded nest of patterns and alters it.

By contrast, this example demonstrates that new software
can be created for automated production of custom-made
patterns directly from an individual’s body measurements, so
that the laborious process for matching all these elements is
not necessary. In this example, we acquired 27 fit models’
numerous detailed body measurements such as depth, width,
front and back arcs taken from the 3D scans, and their well-
fitted custom patterns. It would be well within the skill of one
skilled in the art to determine the variations between the
pattern and the body. This information can then be used to
generate algorithms to change the block pattern according to
an individual’s body measurements.

The present invention is not to be limited in scope by the
specific embodiments described herein. Indeed, various
modifications of the invention in addition to those described
herein will become apparent to those skilled in the art from
the foregoing description. Such modifications are intended to
fall within the scope of the appended claims.

All references cited herein are incorporated herein by ref-
erence in their entirety and for all purposes to the same extent
as if each individual publication, patent or patent application
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was specifically and individually indicated to be incorporated
by reference in its entirety for all purposes.

The citation of any publication is for its disclosure prior to
the filing date and should not be construed as an admission
that the present invention is not entitled to antedate such
publication by virtue of prior invention.

What is claimed is:

1. A computer-based method for categorizing body shape
comprising the steps of:

providing a data set of body shape-defining measurements

of a portion of the body of interest from a plurality of
subjects’ bodies, wherein the measurements define a
silhouette and profile (front and side) perspectives of the
portion of the body of interest;

conducting a principal component (PC) analysis of the data

set of measurements to calculate and generate PC
scores;

conducting cluster analysis using the PC scores as inde-

pendent variables to produce cluster analysis results;
conducting a discriminant analysis to classify body shapes
identified from the cluster analysis results; and
establishing one or more body shape categories from the
cluster analysis results,

thereby categorizing body shapes of the plurality of sub-

jects.

2. The method of claim 1 wherein the body shape-defining
measurements are derived from three-dimensional (3D) body
scans.

3. The method of claim 1 wherein the body shape-defining
measurements are selected from the group consisting of girth,
width, front arc, back arc, front depth, back depth, length,
length proportion and drop value between two measurements
of primary body locations.

4. The method of claim 1 comprising the step of identifying
one or more discriminant functions that define body shape
category.

5. The method of claim 1 comprising the step of calculating
one or more discriminant function score from an individual
subject, thereby determining the individual subject’s body
shape category.

6. The method of claim 1 comprising the step of determin-
ing a range of discriminant function scores for each body
shape group.

7. The method of claim 1 comprising the step of calculating
one or more discriminant function scores from the body-
shape defining measurements of the individual subject.

8. The method of claim 7 comprising the step of comparing
the individual subject’s calculated discriminant function
scores with the range of discriminant function scores for each
body shape group.

9. The method of claim 1 comprising the step of utilizing
multiple measurements that categorize silhouette and profile
views of the body simultaneously.

10. The method of claim 1 comprising the step of using
drop values of body-shape defining measurements.

11. The method of claim 10 wherein the body-shape defin-
ing measurements are derived from 3D body scans.

12. The method of claim 1 comprising the step of utilizing
a buttocks angle and a plurality of proportional measures of
widths, depths, front/back depths, girths, and/or front/back
girths of lower body locations of interest.

13. The method of claim 1 comprising the step of catego-
rizing one or more lower body shape groups by K-means
cluster analysis using one or more PC scores and/or one or
more z-scores.
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14. A shape prototyping system for designing a custom fit
garment for an individual subject comprising:

(a) a data set of body-shape defining measurements from a
plurality of people representative of a population of
interest to characterize the spectrum of body shapes and
postures for which the custom fit garment is to be
designed

(b) a computer-based method for analysis of the measure-
ments, wherein the computer-based method determines
one or more prototype body shapes that identify or quan-
tify a spectrum of shapes and postures that represent the
population of interest;

(c) an adaptable guiding pattern for creating a parameter-
ized pattern, wherein the adaptable guiding pattern com-
prises a structural form and a set of customizable dis-
tance and angle parameters, and wherein parameter
values are matched to dimensions of the individual sub-
ject so that the parameterized pattern will specify a
good-fit garment for the individual subject;

(d) a computer-based method for creating a set of modified
guiding patterns from the adaptable guiding pattern
wherein each of the set of modified guiding patterns is
matched to each of the prototype body shapes identified
in (b);

(e) a method for identifying the appropriate body-shape
prototype guiding pattern for the individual subject’s set
of body shape-defining measurements; and

() a method for producing a parameterized pattern from a
modified guiding pattern, comprising the step of estab-
lishing the modifying guiding pattern distance and angle
parameters for the selected guiding pattern from the
individual subject’s set of body shape-defining measure-
ments.

15. The system of claim 14 wherein the method of (f)
comprises a method for producing a conventional pattern
from which the custom-fit garment can be made from the
parameterized pattern.

16. The system of claim 14 wherein the computer-based
method of (b) comprises conducting principle component
(PC) analysis of the body shape-defining measurements to
derive principle components (PCs) and conducting an unsu-
pervised clustering algorithm on the PCs.

17. The system of claim 14 wherein the method of (f) is
refined empirically by analyzing a range of size adjustments
and/or using a panel of experts to determine good-fit out-
comes by observing garment fit on a set of fit models.

18. A system for computer-assisted designing of a custom
fit garment for an individual subject comprising:

(a) an adaptable guiding pattern, wherein the adaptable
guiding pattern comprises a structural form and a set of
customizable distance parameters for creating a param-
eterized pattern, and wherein the values of the param-
eters are matched to body shape of the subject so that the
parameterized pattern specifies a good-fit garment for
that individual,

(b) amachine learning system for predicting a set of subject
distance parameters for the guiding pattern given a set of
body-shape defining measurements taken from the sub-
ject;

(c) a computer algorithm for combining a subject’s dis-
tance parameters with the structural form of the guiding
pattern to produce a conventional pattern from which the
custom-fit garment can be made; and

(d) a documented database for training the machine learn-
ing system, wherein the documented database is associ-
ated with each modified guiding pattern, and wherein the
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database comprises multiple tuples of distance param-
eter values, associated distance parameters, and good-fit
outcomes.

19. The system of claim 18 wherein the documented data-
base comprises good and poor good-fit outcomes. 5
20. The system of claim 18 wherein the documented data-
base is created by testing a range of predictions and/or using
a panel of experts to determine good-fit outcomes by observ-

ing garment fit on a set of fit models.

#* #* #* #* #* 10

50



